The Periodic Table

I. Periodic Table

- A. Periodic Law the chemical properties of elements are a periodic (recurring) function of their atomic numbers
 - 1. Mendeleev's Periodic Table (1869)- developed the table showing the relationship of elements properties and atomic masses
 - a. arranged elements by properties and left spaces where he felt an undiscovered element should be (proven correct)
 - 2. Moseley (1911)- Periodic Table based on Atomic Number number of protons or electrons
- B. Three types of element Metals, Metalloids, Nonmetals
 - 1. Metals low electronegativity, low ionization energy
 - a. form positive ions
 - b. high thermal (heat) and electrical conductivity, luster, malleable, ductile
 - c. Hg (mercury) only metal liquid at room temperature
 - 2. Metalloids (Semimetals)
 - a. used as semiconductors (B, Si, As, Te, Ge, At)
 - b. mix of properties of metals and nonmetals
 - 3. Nonmetals high electronegativity, high ionization energies
 - a. form negative ions
 - b. tend to be gases, molecular solids or network solids
 - c. tend to be brittle, low thermal and electrical conductivity, dull

C. Reading the Table

- 1. Period each horizontal row of elements
 - a. New period represents the filling of a new principle energy level of electrons
- 2. **Group** or Family each vertical column of elements
 - a. electron structures are similar (valence electrons are the same (A groups only))
 - b. has one more occupied energy level as you go down
 - c. similar chemical properties
- 3. Transition Elements B Groups
 - a. causes multiple oxidation states (has d subshell electrons)
 - b. ions usually appear colored in solid compounds and solutions
- 4. Naming New Elements derived from the atomic number
 - a. 0 = nil, 1 = un, 2 = bi, 3 = tri, 4 = quad, 5 = pent, 6 = hex, 7 = sept, 8 = oct, 9 = enn
 - b. Roots are combined in the order of the atomic number with ium on the end
 - 1. ex. 105 = un nil pent ium
 - c. Symbol made up of the letters of the roots
 - 1. ex. 105 = Unp
- D. Group Characteristics
 - 1. Group 1 Metals Alkali Metals form strongest bases
 - 2. Group 2 Metals Alkaline Earth Metals
 - 3. Groups 14, 15, 16 contain Metals, Metalloids and Nonmetals
 - 4. Group 17 Halogens
 - a. exhibits all three phases of matter at room temperature

- 1. (F₂, Cl₂, gases), (Br₂ liquid), (I₂ solid)
- 5. Group O nonmetals Rare Gasses or Noble Gases or Inert Gases
 - a. very unreactive (stable)
- I. Properties of Elements in the Periodic Table
 - A. Atomic Radius Table S in reference Tables (Regents)
 - 1. Across Period atomic radius decreases (electrons pulled in)
 - 2. Down Group atomic radius increases (adding new shell)
 - B. Ion Radius measured in angstroms ($Å = 1 \times 10^{-10} \text{ meters}$)
 - 1. Metals smaller than atomic radii (lose electrons)
 - 2. Nonmetals larger than atomic radii (gain electrons)
 - C. **Electronegativity** (Electron Affinity) Table S in reference Tables (Regents)
 - 1. ability of an element to attract an electron from another element
 - 2. Across Period electronegativity increases
 - 3. Down Group electronegativity decreases
 - D. **Ionization Energy** Table S in reference Tables (Regents)
 - 1. amount of energy required to remove a valence electron
 - 2. Across Period ionization energy increases
 - 3. Down Group ionization energy decreases
 - E. Metallic Properties
 - 1. Across Period less metallic
 - 2. Down Group more metallic
 - F. Most Reactivity
 - 1. Metals lower left (except Lithium)
 - a. lose electrons form positive ions
 - 2. Nonmetals upper right (except Noble Gases)
 - a. gain electrons form negative ions
 - G. Covalent Radius one half the distance between nuclei for two atoms covalently bonded together or metallic atoms in a metal

Honors

- III. Descriptive Chemistry describes the sources, properties, and uses of specific elements and their compounds.
 - A. Alkali Metals Group IA (means "ashes") many compounds came from wood ashes
 - 1. Hydroxides (OH) formed are strong bases (ex. NaOH)
 - 2. Properties malleable, ductile, lustrous, conduct heat & electricity
 - a. low melting point
 - b. soft can cut with a knife
 - c. high reactivity not found free in nature
 - 1. ex. Na reacts violently in water to produce NaOH (lye)& H₂
 - 2. must be packed in kerosene
 - d. Metals produced by electrolysis
 - 3. Uses
 - a. sodium vapor lamps, preparation of titanium, baking soda (NaHCO₃)

- b. sodium, potassium alloy used as coolant in nuclear reactors
- c. used in photocells & automatic door openers
 - 1. due to ease which they lose electrons
- B. Alkaline Earth Metals (Group IIA) "Earth" refers to the oxides of the metals
 - 1. hydroxides also form strong bases
 - 2. Properties
 - a. not found free in nature
 - 1. ex. CaCO₃ (limestone), CaO (lime)
 - b. Mg is "self protective" forms a thin coat of MgO
 - 3. *Uses*
 - a. Ba paint pigments & X-ray diagnosis
 - b. Mg dyes, laxatives, rubber production, paints
 - c. Ca plaster, building material, drying agent, alkalizing soil
- C. Transition Metals Groups 3-11
 - 1. Properties
 - a. harder, more brittle than Group I & II metals
 - b. multiple oxidation states
 - c. have colored ions
 - 2. Uses
 - a. Ag mirrors, coins, tableware, jewelry (best heat & electrical conductor), photography
 - b. Cu electrical wiring (#2 conductor), resists corrosion, pipes, roofs
 - c. Fe rusts & not self protective, used to make steel

D. Hydrogen

- 1. Properties
 - a. nonmetal, highly reactive (1 valence electron), colorless, odorless, tasteless
 - b. not found free in nature, components of water, acids, fuels
- 2. Uses
 - a. production of ammonia
- E. Aluminum
 - 1. Properties
 - a. most abundant metal, not found free in nature (bauxite Al_2O_3)
 - 2. Uses
 - a. truck bodies, airplanes, cooking utensils
- F. Nitrogen Family
 - 1. Properties
 - a. fairly inactive (forms three covalent bonds (triple bond)
 - b. compounds of N tend to decompose violently (due to energy required to form them)
 - 2. Uses
 - a. dyes, celluloid film, lacquer, explosives, ammonia
- G. Oxygen
 - 1. Properties
 - a. highly reactve, component of most rocks, most abundant element, colorless, odorless
 - b. supports combustion
 - c. exists as allotropes $O_2 \& O_3$ (blue gas)

- 2. *Uses*
 - a. Lox fuel for rockets, manufacture of steel
- H. Sulfur
 - 1. Properties
 - a. has 3 allotropic forms...rhombic, monoclinic (rodlike), noncrystalline all form S_8
 - 2. *Uses*
 - a. vulcanize rubber (hardening), gunpowder, fireworks, matches, medicine
- I. Halogens (Greek salt former)
 - 1. Properties
 - a. exist as diatomic molecules, most reactive nonmetals,
 - b. not free in nature, abundant
 - 2. *Uses*
 - a. form halides (with hydrogen or metals)
 - b. salts, bleach, disinfectants, plastics (pvc), teflon), photographic film, purification
- J. Noble Gases (Inert or Rare) Group 18
 - 1. Properties
 - a. He & Ar are common
 - b. extremely inactive
 - 2. *Uses*
 - a. weather balloons, airships, artificial atmospheres for divers
 - b. light bulbs and signs