Chemical Formulas

- I. Chemical Formula statement in chemical symbols that represents the composition of a substance.
 - A. Symbol represents a single atom of an element or a mole of that element (6.02 X 10²³ atoms)
 - B. Subscripts applies to the element that precedes it
 - 1. No subscript 1 is understood
 - 2. allows us to determine the ratio of atoms which combine in a compound
 - a. Qualitative analysis finds out the kinds of elements in a substance
 - b. Quantitative analysis determines how much of each element is present
 - C. Empirical Formula simplest ratio in which the atoms combine to form a compound
 - 1. use subscripts to determine the least common factor
 - D. Molecular Formula the total number of atoms of each element in one molecule of a substance
 - E. Structural Formula shows how atoms are joined together in a molecule
- II. Ionic Compounds only exist as empirical formulas
 - A. the ionic charge is carried as a superscript
 - 1. Positive ions are called cations
 - 2. Negative ions are called anions
 - B. The total charge of an ionic compound must equal 0
 - 1. ex. $Mg^{2+} + F^- \otimes Mg^{2+} F^{-}_2$
 - 2. this is also true of polyatomic ions (treat a PAI as a single ion with its charge)
 - C. In simple ions (one atom), the oxidation number is equal to the charge on the ion (periodic table)
 - D. The oxidation number of oxygen is -2, except in peroxides when it is -1
 - E. The oxidation number of hydrogen is +1, except in hydrides when it is -1
- III. Naming Compounds
 - A. Binary compounds the less electronegative element is named first and the second element ends in ide.
 - 1. Ex. MgCl₂ is magnesium chloride
 - B. Ternary compounds (containing polyatomic ions) name the element, then the polyatomic ion
 - 1. Ex. MgSO₄ is magnesium sulfate
 - C. Acids contains hydrogen with a nonmetal or polyatomic ion
 - 1. Binary acid use prefix hydro with the nonmetal and change the end to ic.
 - a. Ex. HCL is Hydrochloric Acid
 - 2. Ternary acid (containing polyatomic ion)
 - a. ion ends in ate, use ic ending
 - 1. Ex. H₂SO₄ is sulfuric acid
 - b. ion ends in ite, use ous ending
 - 1. Ex. H₂SO₃ is sulfurous acid
 - D. Metals with multiple oxidation states: New Format Stock System
 - 1. Name of element, roman numeral of ionic charge in parenthesis
 - E. Metals with multiple oxidation states: Old Format
 - 1. first ion (oxidation) state is named with ous ending
 - 2. second ion (oxidation) state is named with a ic ending
 - F. Molecular Substances
 - 1. Prefixes are used in naming the nonmetal molecules
 - a. If first element is 1, then do not use a prefix for it, but you must use a prefix for

1 of 3 5/5/17, 10:41 AM

the second element at all times (mono, di, tri, tetra,)

- 1. Ex. CCl₄ is carbon tetrachloride
- b. If there is more than one element for the first element in the formula, then use the prefix for the first element also.
 - 1. ex. N_2O_5 dinitrogen pentoxide
- III. Stoichiometry the study of the quantitative relationships that can be derived from formulas and equations.
 - A. Formula Information
 - 1. elements present in a compound
 - 2. relative number of atoms of each element in a compound
 - B. the number of atoms of each element present in 1 molecule of the substance
 - C. Gram Atomic Mass the quantity of the element which has a mass in grams equal to the atomic mass
 - 1. equals 1 mole of the element
 - 2. equals 6.02×10^{23} atoms of the element
 - 3. occupies a volume of 22.4L at STP if it is a gas
 - D. Formula Mass the sum of all the atomic masses in the formula of the substance
 - 1. equals 1 mole of the compound
 - 2. equals 6.02×10^{23} molecules of the compound
 - 3. occupies a volume of 22.4L at STP if it is a gas

a. H₂O

b. $Ca(OH)_2$

Element	Atomic Mass	# of Atoms/Formula	Product
Н	1	2	2
O	16	1	16
		Total Mass =	18

Element	Atomic Mass	# of Atoms/Formula	Product
Ca	40	1	40
O	16	2	32
Н	1	2	2
		Total Mass =	74

- 2. Mole Relationships -1 mole of any substance = the GAM
- 3. Percentage Composition the percentage by mass of the elements in a compound

A. Formula: Mass of element in sample

2 of 3 5/5/17, 10:41 AM

Total mass of sample

1.
$$H_2O$$
: $2g/18g = 11.1\%$

$$16g/18g = 88.9\%$$

2. Ca(OH)₂:
$$40g/74g = 54.1\%$$

 $2g/74g = 2.7\%$
 $32g/74g = 43.2\%$
 $= 100\%$

- B. Determining the Empirical Formula for a Compound from given masses
 - 1. Convert the gram masses to moles
 - 2. Determine the smallest whole number ratio of the atoms in the atom
 - 3. Write the empirical formula using the ratio
 - 4. Anything other than a whole number ratio may have to be increased a. 1.5:1=3:2
 - 5. Once the empirical formula is derived, determine the GMW and determine its multiple to arrive at the correct formula.
- C. Determining the Empirical Formula for a Compound from given % composition
 - 1. Convert the % composition to grams of substance by assuming 100g of substance
 - 2. Proceed the same as determining the empirical formula from given mass
- 3. Density of a Gas
 - A. Determine the GMW of the gas
 - B. Divide the GMW by 22.4L to determine the density of the gas at STP
 - 1. One mole of any gas at STP will occupy 22.4L

3 of 3 5/5/17, 10:41 AM