Chemical Equations

- I. Chapter 8 Chemical Equation represents with symbols and formulas, the identities and relative amounts of the reactants and products in a chemical reaction
 - A. Reactants substances that exist before a chemical reaction occurs
 - 1. placed on the left side of a chemical equation
 - B. Products substances that are made as a result of a chemical reaction
 - 1. placed on the right side of a chemical equation
- II. Identifying a chemical reaction
 - A. Evolution of heat and light (ex. Combustion)
 - B. Production of a gas bubbling in a solution indicates a reaction is occurring
 - C. Formation of a precititate a solid settling out of a solution
 - D. Color change
- III. Balancing a Chemical equation
 - A. Know what the reactants and products are, and write a word equation for the reaction
 - B. Write the correct balanced formula for all reactants and products
 - 1. Don't forget BrINClHOF is diatomic
 - C. Use coefficients to balance the left side of the equation with the right side. (Conservation of Matter)
 - 1. coefficient a small whole number that appears in front of a formula in a chemical equation.
 - 2. Use (g) for gas, (l) for liquid, (s) for solid and (aq) to indicate a substance is dissolved in water.
- IV. Types of Chemical Reactions
 - A. Synthesis Reactions (direct combination)
 - 1. element or compound + element or compound ® compound
 - B. Decomposition Reactions (analysis)
 - 1. compound ® two or more elements or compounds
 - C. Single Replacement Reactions
 - 1. element + compound ® element + compound
 - 2. Use table J to determine if the reaction will occur. The one above will replace the one below.
 - D. Double Replacement Reactions
 - 1. compound + compound ® compound + compound
 - a. usually forms a precipitate solid substance formed by a change in a liquid or gas medium
 - b. Use table F for solubility of the products to determine if a precipitate will form.
 - E. Combustion Reaction substance combines with oxygen, releasing a large amount of energy in the form of light and heat.
 - 1. Most combustion is with organic compound and always follows the format:
 - a. C compound $+ O_2$ à $CO_2 + H_2O$
- V. Ionic equations stress the reaction and production of ions
 - A. only shows the ions which are involved in the reaction
 - B. ions which are not in the reaction are called "spectator ions"
 - 1. Normal Equation $Cl_2(aq) + 2NaBr(aq) \otimes Br_2(aq) + 2NaCl(aq)$

1 of 4 5/5/17, 10:41 AM

- 2. Ionic Equation $Cl_2(aq) + 2Br^-(aq) \otimes Br_2(aq) + 2Cl^-(aq)$
 - a. Na is the spectator ion
- VI. Reversible Reactions one in which the products can react with each other to form the reactants A. use a 2 way arrow to show this type of reaction.

VII. Chapter 9 - Stoichiometry

- A. Mole Mole Problems
 - 1. Set up a ratio of moles of substances in the balanced equation to the actual moles
- B. Mass Mass Problems
 - 1. Convert the amount of one substance in a formula and determine the amount needed or produced of another substance in the reaction
 - a. Must use a balanced equation
 - b. Use the number of moles of each substance used as the conversion point of the problem
 - 2. Sequence of Problem Solving
 - a. Convert mass to moles (GMW)
 - b. Use mole ratios in balanced equation to "convert" to the amount of unknown
 - c. Convert moles of unknown to the mass of unknown (GMW)
 - I. g of known X 1 mole known X # moles unknown X GMW unknown
 - II. GMW known # moles known 1 mole unknown

C. Mass - Volume

- 1. Sequence of Problem Solving
 - a. Convert mass to moles (GMW)
 - b. Use mole ratios in balanced equation to "convert" to the amount of unknown
 - c. Convert moles of unknown to the volume of unknown (22.4L)
 - I. g of known X 1 mole known X # moles unknown X 22.4L unknown
 - II. GMW known # moles known 1 mole unknown
- D. Volume Volume
 - 1. Sequence of Problem Solving
 - a. Convert volume to moles (22.4L)
 - b. Use mole ratios in balanced equation to "convert" to the amount of unknown
 - c. Convert moles of unknown to the volume of unknown (22.4L)
 - I. L of known X 1 mole known X # moles unknown X 22.4L unknown
 - II. 22.4L known # moles known 1 mole unknown
- E. Mole Volume Relationships
 - 1. Use the formula for density to help solve the number of moles present
- F. Limiting Reactants the reactant that limits the amounts of the other reactants that can combine and the amount of product that can form in a chemical reaction. The substance not used up is the excess reactant.
 - 1. Divide the # of moles of each reactant by the coefficient to determine the Limiting reactant (lowest number obtained)
- G. Theoretical Yield the maximum amount of product that can be produced from a given amount of reactant.
- H. Actual Yield the measured amount of a product obtained from a reaction
- I. Percent Yield = actual yield/theoretical yield x 100

2 of 4 5/5/17, 10:41 AM

I. Predicting Equations

- A. Reactions occur if:
 - 1. A precipitate forms from a solution of soluble reactants.
 - 2. Water forms in the reaction of an acid and a base.
 - 3. A weak electrolyte forms from a solution of strong electrolytes.
 - 4. A gas forms that escapes from the reaction mixture
- B. Rules for Determining Solubility

-----Soluble Compounds-----

- 1. All compounds of the alkali metals (Group IA) are soluble
- 2. All salts containing NH_4^+ , NO_3^- , ClO_4^- , ClO_3^- , and $C_2H_3O_2^-$ are soluble.
- 3. All chlorides, bromides, and iodides (salts containing Cl⁻, Br⁻, or I⁻) are soluble except when combined with Ag⁺, Pb²⁺, and Hg₂²⁺ (note the subscript "2")
- 4. All sulfates (salts containing SO_4^{2-}) are soluble except those of Pb^{2+} , Sr^{2+} , Hg_2^{2+} , and Ba^{2+} .

-----Insoluble Compounds-----

5. All hydroxides (OH $^{-}$ compounds) and all metal oxides (O $^{2-}$ compounds) are insoluble except those of Group IA and of Ca $^{2+}$, Sr $^{2+}$, and Ba $^{2+}$.

Note: When metal oxides do dissolve, they react with water to form hydroxides. The oxide ion, O^{2-} , does not exist in water. For example:

 $Na_2O(s) + H_2O \ a \ 2 \ NaOH(aq)$

- 6. All compounds that contain PO₄³⁻, CO₃²⁻, SO₃²⁻, and S²⁻ are insoluble, except those of Group IA and NH₄⁺.
 - -----Special Reactions Involving Polyatomic Ions-----

3 of 4 5/5/17, 10:41 AM

- 7. Reactions of Carbonates, Bicarbonates, and Sulfites, with acids. Also Bases with Ammonium Salts
 - a. HCO_3 , H_2CO_3 , will break down into $H_2O + CO_2$
 - b. H_2SO_3 will break down into $H_2O + SO_2$
 - c. $NH_4(aq) + OH^-(aq)$ à $NH_3(g) + H_2O$

4 of 4