Name Date

Period

Grade:

EXPERIMENT 31 SOLUBILITY CURVES

PRELAB QUESTIONS:

1. What are three ways to increase rate of a solid dissolving in a liquid?

2. Define these terms: solution solvent solute

saturated solution solubility

equilibrium

3. How does the solubility of a gas change with increasing temperature?

4. What is the general trend in terms of solubility for ionic solids as the temperature increases?

Name	Period

Date Lab Partners

EXPERIMENT 31 SOLUBILITY CURVES

DATA TABLE:

g KNO ₃ /5.0 mL H ₂ O	g KNO ₃ /100.0 mL H ₂ O	crystallization temperature
2.0g/5mL		
4.0 g/5mL		
6.0 g/5mL		
8.0 g/5mL		

CONCLUSION QUESTIONS:

 Construct a grap 	h using your data.	Show Temperature	e on the x-axis and S	Solubility of KNO3 in
grams per 100.0 m	L of water on the	y-axis.		

2.	From	your	solubility	curve,	decide	if	the	reaction	is	exothermic	or	endothermic.	What
ev	idence	did yo	ou use to su	ipport y	our con	clu	sion	?					

3. Using your solubility curve	e, how many	grams of KNO	O3 can be dissolve	d in 100 mL	of H ₂ O a
the following temperatures?	(a) 30°C	(b) 60° C	(a) 70° C		

4. Us	se reference	table D	to answe	r the sa	ame questi	n as w	vas asked	in (question	#3:	how	many
gram	s of KNO ₃	can be di	issolved in	100 m	L of H ₂ O a	t the fo	ollowing te	emp	eratures	?		

(a) 30° C (b) 60° C (a) 70° C

How close are your values to those on reference table D?

5. Using reference table D, classify the following KNO_3 solutions as saturated, unsaturated, or supersaturated. Explain your answers.

(a) 75 g KNO₃/l00 mL at 40°C

(b) 60 g KNO₃/l00 mL at 50°C

Discussion Conclusion