Names Date

Period

Grade:

Lab 4

Measuring Matter

PreLab Questions - Refer to textbook

Use the correct number of significant figures in all problems.

- 1. Change the following to exponential form;)
 - a. 62 000 000
 - b. 0.0008
- 2. Convert the following exponential numbers to ordinary numbers;
 - a. 2.14×10^4
 - b. 1.95 x 10⁻⁵
- 3. Multiply the following:
 - a. $(4.1 \times 10^{-2}) \times (2.8 \times 10^{3})$ b. $(6.02 \times 10^{23}) \times (4.5 \times 10^{2})$
- 4. Divide the following:
 - a. $\frac{2.64 \times 10^3}{1.88 \times 10^2}$

- b. 5.02×10^{3}
- 5. Covert the following to the indicated smaller unit:
 - 14 meters (m) cm (centimeter) to b. 0.8 kilometers (km) to m (meter) 20.9 liters (L) mL (milliliter) c. to d. 4.6 grams (g) mg (milligrams) to 7.8 kilograms (kg) g (grams)

NAME		PERIOD
DATE:	LAB PARTNERS:	

EXPERIMENT 4 MEASURING MATTER

Part I - Rules for making measurements in the laboratory

(Remember every measurement has a unit.)

DATA TABLE

Measuring Instrument	Unit you Want	Place Value Of Smallest Marking On Instrument	Place Value You Should Measure To
Scale – Triple Beam Balance			
100 mL graduated cylinder			
10 mL graduated cylinder			
250 mL graduated cylinder			
Centimeter ruler			
Meter Stick			
Thermometer (°C)			

Part II - Measuring mass and volume

A. Weighing Pennies

Weigh two U.S. pennies separately. Express the mass to the unit of accuracy of the triple beam balance.

- 1. The mass of one penny is grams.
- 2. The mass of a second penny is grams.

- 3. Are the two masses identical? Explain.
- 4. Weigh both pennies together. The combined mass of the two pennies is grams.
- 5. Is the combined mass of the pennies exactly twice the mass of a single penny? Explain.

B. Measuring the Volume of A Liquid

Test Tube	Volume in mL
1	
2	
3	

c. Measuring the Volume of 11 bon	C.	Measuring the	Volume	of A	Soli
-----------------------------------	----	---------------	--------	------	------

Using the formula: length X width X height = volume

- 1. The length of the block is cm.
- 2. The width of the block is cm.
- 3. The height of the block is cm.
- 4. The volume of the block is cm^3 .

Using water displacement.

- 5. The original volume of water is cm.
- 6. The volume of water with the block is cm^3 .
- 7. The volume of the block is _____cm³.
- 8. Compare the volumes obtained by both methods. Are they exactly the same? Explain.

CONCLUSION QUESTIONS

- 1. Why is measurement so important in science?
- 2. Why are all Measurements uncertain?
- 3. Find the volume of a rectangular block of detail with the following dimensions:

length
$$= 2.9 \text{ cm}$$

width $= 4.7 \text{ cm}$

height = 1.1 cm

Be sure to use the correct number of significant figures.

- 4. Which method is best suited for determining the volume of solids with irregular dimensions? Are there any limitations to this method? Explain.
- 5. Why should the graduated cylinder be held at eye level when reading the volume of a liquid?

Discussion

Conclusion