Name Date

Period

Grade:

Lab 16 THE HALF-LIFE OF AN M & M

PreLab Questions

None

NAME:		PERIOD:
DATE:	LAB PARTNERS:	

EXPERIMENT 16 THE HALF-LIFE OF AN M & M

DATA TABLE

Trial Number	Lab Group Results # Radioactive M & M's	Class Results # Radioactive M & M's
1	100	100
2		
3		
4		
5		
6		

QUESTIONS AND CONCLUSIONS

- 1. When was the rate of decay faster, during the first or last trials?
- 2. What factor does the rate of decay depend upon?
- 3. Based on the your graph, what kind of relationship exists between time that has elapsed and mass of M & M's still radioactive?

Answer the following questions using the analogy that each trial represents a half-life. Also consider that the half-life of an M & M is 12.4 seconds.

- 4. What is the number of seconds required for a radioactive M & M to pass through three half-life periods?
- 5. What fraction of a sample of radioactive M & M's will remain after 37.2 seconds?
- 6. Approximately how many grams of a 40 gram sample of radioactive M & M's would remain after 24.8 seconds.
- 7. After three half-life periods, 12.5 grams of an original sample of radioactive M & M's remains unchanged. What was the mass of the original sample?
- 8. Compare the two graphs prepared, one representing group results the other representing class results. Which simulation comes closest to approximating half-life? Why?