Quiz 9 – Atomic Structure AP Chemistry

This quiz must be completed and brought to my room <u>before</u> the start of first period on Tuesday. Failure to do so will incur a 25% penalty unless there is a legal reason.

You must show all work in order to receive credit.

- 1. A photon has a frequency of 4.05×10^4 Hz.
 - a. Convert this frequency into wavelength (nm)
 - b. Is this wavelength visible? If not, what type of radiation is it?
 - c. What is the mass of the photon
 - d. Calculate the energy, in joules, of this photon.
 - e. Calculate the energy (in kilojoules) of 1 mole of photons all with this frequency.
- 2. When a compound containing cesium ions is heated in a Bunsen burner flame, photons with energy of 4.30×10^{-19} J are emitted. What color is the cesium flame? Show your calculations that determined the correct wavelength.
- 3. Consider the following energy levels of a hypothetical atom:

E ₄	1.0x10 ⁻¹⁹
E ₃	5.0 x10 ⁻¹⁹
E ₂	10. x10 ⁻¹⁹
E ₁	-15 x10 ⁻¹⁹

- a. What is the wavelength of the photon needed to excite an electron from E_1 to E_4 ?
- b. What is the energy (in joules) a photon must have in order to excite an electron from E₂ to E₃?
- 4. Calculate the frequency and wavelength of the emitted photon when an electron drops from the n=5 to the n=2 level in a hydrogen atom.
 - c. Explain whether the H atom emits energy or whether it absorbs energy during the transition. Justify your answer
 - d. Account for the observation that the amount of energy associated with the same electronic transition from n=5 to n=2 in the He⁺ ion is greater than that associated with the corresponding transition in the H atom. (Bonus: show the calculation for the He⁺ energy)
- 5. What is the deBroglie wavelength in cm of a 12.4g hummingbird flying at 1.20×10^2 mph? (1 mile -1.61km)
- 6. Use the Aufbau principle to obtain the ground state electron configuration of selenium.

1 of 1 5/5/17, 10:02 AM