Summer assignment for AP Calculus AB for 2023-2024 Mrs. Purtell, J3

Welcome to AP Calculus AB. This course is a full year class, taught at the level of a college or university calculus course, where Calculus AB covers 1 semester of college calculus content. Successful completion of this course will provide preparation for the AP exam, which may qualify you to receive credit for the equivalent college course (check with colleges you are interested in to see what their policy is for AB Calculus.) Students entering this course should have **mastered** the equivalent of 4 years of high school mathematics (successful completion of Precalculus). **NO REVIEW OF ALGEBRA TOPICS WILL BE INCLUDED IN THE CLASS CONTENT.**

The Calculus AB course is designed to develop students' understanding of concepts, methods, and applications through emphasizing multiple approaches to representing solutions to problems (graphically, numerically, analytically, and verbally). The curriculum used will be Flipped Math (flippedmath.com).

The course will use the TI-89 graphing calculator. Students may purchase their own calculator otherwise the student will be given a TI-89 on the 1st day of class. (If lost or damaged during the year, the fee is \$130). You may use other calculators, however no instruction will be provided on anything other than the TI-89.

You will get the detailed course overview and grading guidelines on the 1st day of class, however, you should know that unlike other high school math classes, you will <u>not</u> be allowed to use notes on any tests, there will be <u>no team tests</u>, <u>no test revisions</u>, daily homework is <u>mandatory</u>, and <u>late work is not accepted</u>.

Summer Assignment – Review Problems

The summer assignment is designed to provide review and assessment of precalculus topics required to be successful in calculus. The summer assignment is designed to help you identify the skills you may need to practice **before** the school year begins. A test will be given during the **first week** of school on this material. The summer assignment will be graded and is due on the **first** full day of class – NO EXCEPTIONS. Please utilize your precalculus notes and examples to help complete the exercises. Be sure to show ALL work on your own paper, organized and labeled with answers boxed.

If you are struggling with any of the topics, please utilize your resources to LEARN the material on your own. You are responsible for your own learning and understanding of course prerequisite concepts and material.

Good luck with this assignment, and I look forward to working with you in the fall! Any questions, please feel free to email cpurtell@sonomaschools.org.

Best, Mrs. Purtell

Calculus - SUMMER PACKET

Summer + Math = $(Best Summer Ever)^2$

NO CALCULATOR!!!

Given $f(x) = x^2 - 2x + 5$, find	l the following.	
1. f(-2) =	2. $f(x+2) =$	3. $f(x+h) =$
Use the graph $f(x)$ to answer the	e following.	
4. $f(0) =$	f(4) =	f(x) $f(x)$
f(-1) =	f(-2) =	
f(2) =	f(3) =	-5 -4 -3 -2 -1 1 2 3 4 5 -2 -2 -2 -2 -3
f(x) = 2 when $x = ?$	f(x) = -3 when $x = ?$	

Write the equation of the line meets the following conditions. Use point-slope form. $y - y_1 = m(x - x_1)$

5. slope = 3 and $(4, -2)$	6. $m = -\frac{3}{2}$ and $f(-5) = 7$	7. $f(4) = -8$ and $f(-3) = 12$

D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line

- 12. Which choice represents the slope of the secant line shown?
 - A) $\frac{f(x+h)-f(x)}{x-(x+h)}$ B) $\frac{x-(x+h)}{f(x+h)-f(x)}$ C) $\frac{f(x+h)-f(x)}{x+h-x}$ $\frac{f(x) - f(x+h)}{x+h-x}$

- 13. Which of the following statements about the function f(x) is true?
 - I. f(2) = 0II. (x + 4) is a factor of f(x)III. f(5) = f(-1)
 - (A) I only

D)

- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

MULTIPLE CHOICE!

- 17. Which of the following functions has a vertical asymptote at x = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2 16}{x 4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$

 - (E) None of the above

18. Consider the function: $(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$. Which of the following statements is true?

- I. f(x) has a vertical asymptote of x = 2
- II. f(x) has a vertical asymptote of x = -2
- III. f(x) has a horizontal asymptote of y = 1
- (A) I only
- (B) II only
- (C) I and III only
- (D) II and III only
- (E) I, II and III

Rewrite the following using rational exponents. Example: $\frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$		
19. $\sqrt[5]{x^3} + \sqrt[5]{2x}$	20. $\sqrt{x+1}$	21. $\frac{1}{\sqrt{x+1}}$
$22. \ \frac{1}{\sqrt{x}} - \frac{2}{x}$	23. $\frac{1}{4x^3} + \frac{1}{2}\sqrt[4]{x^3}$	$24. \ \frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$
Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$		
		$\frac{3}{\sqrt{x^2}} + \frac{3}{x^2}$
25. $x^{-\frac{1}{2}} - x^{\frac{3}{2}}$	26. $\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$	27. $3x^{-\frac{1}{2}}$
25. $x^{-\frac{1}{2}} - x^{\frac{3}{2}}$	26. $\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$	27. $3x^{-\frac{1}{2}}$
25. $x^{-\frac{1}{2}} - x^{\frac{3}{2}}$ 28. $(x+4)^{-\frac{1}{2}}$	26. $\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$ 29. $x^{-2} + x^{\frac{1}{2}}$	$30. \ 2x^{-2} + \frac{3}{2}x^{-1}$
25. $x^{-\frac{1}{2}} - x^{\frac{3}{2}}$ 28. $(x+4)^{-\frac{1}{2}}$	26. $\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$ 29. $x^{-2} + x^{\frac{1}{2}}$	$30. \ 2x^{-2} + \frac{3}{2}x^{-1}$

Need to know basic trig functions in RADIANS! We never use degrees. You can either use the Unit Circle or Special Triangles to find the following.		
31. $\sin \frac{\pi}{6}$	32. $\cos \frac{\pi}{4}$	33. $\sin 2\pi$
34. $\tan \pi$	35. $\sec \frac{\pi}{2}$	36. $\cos \frac{\pi}{6}$
37. $\sin \frac{\pi}{3}$	38. $\sin \frac{3\pi}{2}$	39. $\tan\frac{\pi}{4}$
40. $\csc \frac{\pi}{2}$	41. $\sin \pi$	42. $\cos \frac{\pi}{3}$
43. Find <i>x</i> where $0 \le x \le 2\pi$,	44. Find <i>x</i> where $0 \le x \le 2\pi$,	45. Find <i>x</i> where $0 \le x \le 2\pi$,
$\sin x = \frac{1}{2}$	$\tan x = 0$	$\cos x = -1$
Solve the following equations. R	the demember $e^0 = 1$ and $\ln 1 = 0$.	
46. $e^x + 1 = 2$	47. $3e^x + 5 = 8$	48. $e^{2x} = 1$
49. $\ln x = 0$	50. $3 - \ln x = 3$	51. $\ln(3x) = 0$
52. $x^2 - 3x = 0$	53. $e^x + xe^x = 0$	54. $e^{2x} - e^x = 0$

Solve the following trig equation	s where $0 \le x \le 2\pi$.	
55. $\sin x = \frac{1}{2}$	56. $\cos x = -1$	57. $\cos x = \frac{\sqrt{3}}{2}$
58. $2\sin x = -1$	59. $\cos x = \frac{\sqrt{2}}{2}$	$60. \ \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$
61. $\tan x = 0$	62. $\sin(2x) = 1$	63. $\sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$
For each function determine its	domain and range	
For each function, determine its Function	domain and range. Domain	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x-4}$	domain and range. <u>Domain</u>	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x-4}$ 65. $y = (x-3)^2$	domain and range. <u>Domain</u>	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$	domain and range. <u>Domain</u>	Range
For each function, determine its Function 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$	domain and range. Domain	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$	domain and range. Domain	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x-4}$ 65. $y = (x-3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4-x^2}$ Simplify.	domain and range. Domain	Range
For each function, determine its <u>Function</u> 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$ Simplify. 69. $\frac{\sqrt{x}}{x}$	domain and range. <u>Domain</u> 70. $e^{\ln x}$	Range 71. e ^{1+ln x}
For each function, determine its <u>Function</u> 64. $y = \sqrt{x - 4}$ 65. $y = (x - 3)^2$ 66. $y = \ln x$ 67. $y = e^x$ 68. $y = \sqrt{4 - x^2}$ Simplify. 69. $\frac{\sqrt{x}}{x}$	domain and range. Domain 70. $e^{\ln x}$	Range 71. e ^{1+ln x}

72. ln 1	73. $\ln e^7$		74. $\log_3 \frac{1}{3}$
75. log _{1/2} 8	76. $\ln \frac{1}{2}$		77. $27^{\frac{2}{3}}$
	2		27
78. $(5a^{2/3})(4a^{3/2})$	79. $\frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$		80. $(4a^{5/3})^{3/2}$
If $f(x) = \{(3,5), (2,4), (1,7)\}$	$g(x) = \sqrt{x - x}$	-3, then determ	ine each of the following.
(1) $((0, 0)$ $(4, 0)$ $(4, (1))$	1() 2.		-
$h(x) = \{(3,2), (4,3), (1,6)\}$ 81. $(f+h)(1)$	$\frac{k(x) = x^2 + \frac{k(x)}{2}}{82. (k - g)(5)}$	5 ′	83. $f(h(3))$
$\frac{h(x) = \{(3,2), (4,3), (1,6)\}}{81. (f+h)(1)}$	$\frac{k(x) = x^2 + 4}{82. (k - g)(5)}$	<u>5 ´</u>	83. $f(h(3))$
$\frac{h(x) = \{(3, 2), (4, 3), (1, 6)\}}{81. (f + h)(1)}$	$k(x) = x^2 + 82.$ (k - g)(5)	<u>5</u> ´	83. $f(h(3))$
$\frac{h(x) = \{(3,2), (4,3), (1,6)\}}{81. \ (f+h)(1)}$ 84. $g(k(7))$	$k(x) = x^2 + k(x) +$	5	83. $f(h(3))$ 86. $g(g(9))$
$\frac{h(x) = \{(3,2), (4,3), (1,6)\}}{81. \ (f+h)(1)}$ 84. $g(k(7))$	$\frac{k(x) = x^{2} + k(x) + k(x)$	5	83. $f(h(3))$ 86. $g(g(9))$
$\frac{h(x) = \{(3,2), (4,3), (1,6)\}}{81. (f+h)(1)}$ 84. $g(k(7))$ 87. $f^{-1}(4)$	$\frac{k(x) = x^{2} + k(x) = x^{2} + k(x) + k(x$	5 88. k ⁻¹ (x)	83. $f(h(3))$ 86. $g(g(9))$
$\frac{h(x) = \{(3, 2), (4, 3), (1, 6)\}}{81. (f + h)(1)}$ 84. $g(k(7))$ 87. $f^{-1}(4)$	$k(x) = x^2 + k(x) +$	$\frac{5}{88. k^{-1}(x)}$	83. $f(h(3))$ 86. $g(g(9))$
$\frac{h(x) = \{(3, 2), (4, 3), (1, 6)\}}{81. (f + h)(1)}$ 84. $g(k(7))$ 87. $f^{-1}(4)$	$\frac{k(x) = x^{2} + k(x) = x^{2} + k(x) + k(x$	5 88. $k^{-1}(x)$	83. $f(h(3))$ 86. $g(g(9))$
$\frac{h(x) = \{(3, 2), (4, 3), (1, 6)\}}{81. (f + h)(1)}$ 84. $g(k(7))$ 87. $f^{-1}(4)$ 89. $k(g(x))$	$k(x) = x^2 + k(x) +$	5 88. $k^{-1}(x)$ 90. $g(f(2))$	83. $f(h(3))$ 86. $g(g(9))$