Name Date

Period

Grade:

Lab 29 RELATING MOLES TO COEFFICIENTS OF A CHEMICAL EQUATION

PRELAB QUESTIONS

- 1. Define coefficient, subscript, molar volume, precipitate.
- 2. What does the term "excess" mean in a chemical equation?
- 3. What law have you previously studied in chemistry defines the relationship between reactant and products in a balanced equation?

NAME		PERIOD
DATE	LAB PARTNERS	

EXPERIMENT 29 CHEMICAL

RELATING MOLES TO COEFFICIENTS OF A CEQUATION				
DATA	ATABLE			
A.	Mass of empty beaker	g		
B.	Mass of iron filings	g		
C.	Mass of beaker & copper	g		
D.	Visual observations	g		
	CULATIONS Use the following as applicable. Number of Moles = $\frac{\text{Mass (g)}}{\text{Gram atomic mass}}$			
Gram atomic mass of Fe = 55.8 g Fe/mole				
	atomic mass of Cu = 63.5 g Cu/mole all calculations			
1. Find the mass of Cu produced (c-a)			g	
2. Find number of moles of Cu produced				
3. Fin	d number of moles of Fe produced			
4. Find the whole number ratio of moles of Fe to moles of Cu				

CONCLUSIONS AND QUESTIONS

- 1. How does the ratio found in calculation 4 above compare with the ratio of the coefficients of the same two metals in the balanced equation for the reaction?
- 2. How many moles of copper sulfate are used to produce the solution in this experiment? Why is this amount of copper sulfate said to be "in excess?"
- 3. Explain why the iron is the limiting factor in this experiment.
- 4. A general description of the single replacement reaction in this experiment is:
 metal + salt in solution → "new" metal + "new" salt solution.
 Give a balanced equation for another example of this type of single replacement reaction.
- 5. Give general descriptions of two other types of single replacement reactions. Using balanced equations, give a specific example of each type.
- 6. Consider the reaction:

$$Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$$
.

If 3 moles of copper metal react, how many moles of silver metal will be produced? **Show all work.**

Discussion

Conclusion