Quiz 14— Kinetics AP Chemistry

This quiz must be completed and brought to my room <u>before</u> the start of first period on Tuesday. Failure to do so will incur a 25% penalty unless there is a legal reason.

You must show all work in order to receive credit.

1.
$$5 Br^{-}(aq) + BrO3^{-}(aq) + 6 H^{+}(aq) à 3 Br_{2}(1) + 3 H_{2}O(1)$$

In a study of the kinetics of the reaction represented above, the following data were obtained at 298 K.

Experiment	Initial [Br ⁻] (mol L ⁻¹)	Initial [BrO ₃ ⁻] (mol L ⁻¹)	Initial [H ⁺] (mol L ⁻¹)	Rate of Disappearance of BrO ₃ ⁻ (mol L ⁻¹ s ⁻¹)
1	0.00100	0.00500	0.100	2.50 x 10 ⁻⁴
2	0.00200	0.00500	0.100	5.00 x 10 ⁻⁴
3	0.00100	0.00750	0.100	3.75 x 10 ⁻⁴
4	0.00100	0.01500	0.200	3.00 x 10 ⁻³

(a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.

(i) Br⁻

(ii) BrO₃-

(iii) H⁺

- (b) Write the rate law for the overall reaction
- (c) Determine the value of the specific rate constant for the reaction at 298 K. Include the correct units.
- 2. An environmental concern is the depletion of O_3 in Earth's upper atmosphere, where O_3 is normally in equilibrium with O_2 and
 - O. A proposed mechanism for the depletion of O₃ in the upper atmosphere is shown below.

Step I
$$O_3 + Cl \grave{a} O_2 + ClO$$

1 of 2

5 Br-(aq) + BrO3-(aq) + 6 H+(aq) à 3 Br2(l) + 3 H2O(l)

Step II
$$ClO + O \grave{a} Cl + O_2$$

- (a) Write a balanced equation for the overall reaction represented by Step I and Step II above.
- (b) Clearly identify the catalyst in the mechanism above. Justify your answer.
- (c) Clearly identify the intermediate in the mechanism above. Justify your answer.
- (d) If the rate law for the overall reaction is found to be $rate == k[O_3]$ [Cl], determine the following.
 - (i) The overall order of the reaction
 - (ii) Appropriate units for the rate constant, k
 - (iii) The rate-determining step of the reaction, along with justification for your answer.
- 3. List 4 factors that influence the rate of a reaction
- 4. The rate of the reaction $CH_3COOC_2H_5$ (aq) + $H_2O_{(1)}$ à $CH_3COOH_{(aq)}$ + $C_2H_5OH_{(aq)}$ shows first order characteristics that is rate = $k[CH_3COOC_2H_5]$ even though this is a second order reaction (first order in $CH_3COOC_2H_5$ and first order in H_2O). Explain.
- - a. Starting with a concentration of 0.086M, calculate the concentration of NOBr after 22s.
 - b. Calculate the half lives when $[NOBr]_0 = 0.072M$ and $[NOBr]_0 = 0.054M$

2 of 2