Covalent Bonding Orbitals

Chapter 9

- I. Localized Electron Model (Hybridization) Explained in Chapter 8
 - A. Electrons are shared in orbitals that are specifically associated with one or the other of the bonded atoms
 - B. these are called atomic orbitals
 - C. the shape of the molecule is determined using VSEPR
 - D. Hybridization of Orbitals
 - 1. s,p, & d orbitals in an atom change to form a new type of orbital
 - 2. the new orbitals are all identical in shape
 - 3. the total number of hybrid orbitals formed is equal to the total number of atomic orbicats used
 - a. ex. C shows sp³ hybridization
 - E. Double and Triple Bonds
 - 1. first bond forms from hybridized orbitals
 - 2. second and third bonds form from unhybridized p orbitals (not accounted for directly)
 - a. **Sigma Bonds** any bond where the electron pair is shared on the line between the two bonded atoms from a hybridized orbital
 - b. **pi bond** a bond where the electron pair is shared in the area above and below the line joining the atoms.
 - 1. always formed by unhybridized p orbitals
 - 2. a double bond is always a combination of a sigma bond and a pi bond.
 - 3. a triple bond is always a combination of a sigma bond and 2 pi bonds

II. Molecular Orbital Model

- A. When bonding, overlapping atomic orbitals change and become orbitals encompassing the entire molecule
- B. the number of molecular orbitals formed is the same as the number of atomic orbitals used
- C. each pair of atomic orbitals forms on <u>bonding</u> molecular orbital and one <u>antibonding</u> molecular orbital
 - 1. Bonding Molecular Orbital greatest probability of finding the shared electrons is between the two nuclei + : +
 - a. Because both nuclei attract the electrons, filling a bonding orbital provides a force to hold the molecule together.
 - 2. Antibonding Orbital
 - a. Greatest probability of finding the shared electrons is outside of the space between the two nuclei \times + + \times
 - 1. when electrons are in this type of orbital the nuclei repel each other
 - 2. this tends to break the molecule apart
 - 3. in each pair, the antibonding orbital is more effective than the bonding orbital
 - 3. If both orbitals (bonding & antibonding) are filled the molecule will break apart and not

D. Moleculary Orbitals formed from 1s atomic orbitals 1s

1 of 4 4/28/17, 3:44 PM

- 1. For a given formula
 - a. Determine the total number of valence electrons in the molecule
 - b. Fill molecular orbitals from lowest to highest energy level

Ex. H₂

Antibonding orbital is empty

Bonding orbital is full

Therefore the atoms bond and the molecule exists

III. Bond Order

A. An indicator of bond strength

- 1. 1 = single bond, 2 = double bond, 3 = triple bond
- 2. Bond order = bonding e^- antibonding $e^-/2$
 - a. For H_2 , Bond order (BO) = 2-0/2 = 1

Ex. He₂

Antibonding orbital is full

Bonding orbital is full

$$BO = 2-2/2=0$$

Therefore He₂ does not exist

- B. Bond Order for 2nd Principal Energy Level
 - 1. Diagram now uses s & p orbitals
 - 2. 8 molecular orbitals are formed from 8 atomic orbitals
 - 3. Antibonding orbitals are at higher energy levels than bonding orbitals
 - 4. sp_x has more energy than pp_y and pp_z

_		
	$\sigma 2p_x$	
σ2p _y	• • •	πp_z
ОБРУ		PZ

IV. Paramagnetism and Diamagnetism

- A. Paramagnetism is a slight attraction to magnets
 - 1. results from uncancelled magnetic fields of unpaired electrons
 - 2. any substance with unpaired electrons will be paramagnetic
 - a. odd atomic numbers, even atomic numbers with ½ filled orbitals
- B. Diamagnetism a slight repulsion to magnets
- C. Occurs when all electrons are paired
 - 1. Practice with Li₂, Be₂, B₂, C₂, N₂, O₂, F₂, Ne₂

- 2. Using Molecular orbital diagrams, determine the bond orders and magnetism in each of the following: O_2 , O_2^+ , O_2^-
- 3. Determine the Bond Order & magnetism for: Ne₂, P₂
- C. Heteronuclear Diatomic Molecules
 - 1. Certain molecules cannot be addressed in the localized electron model because of the odd

3 of 4 4/28/17, 3:44 PM

number of valence electrons

a. Using molecular orbitals, predict the bond order and magnetism of: NO, NO⁺, CN⁻

V. Molecular Orbital Theory

A. Strengths

- 1. correctly predicts bond strengths and magnetism for diatomic molecules
- 2. portrays electrons as being delocalized in polyatomic molecules

B. Weakness

1. very difficult to apply to polyatomic molecules

4 of 4 4/28/17, 3:44 PM