Thermochemistry

Chapter 6

Thermodynamics

- The study of energy and its conversions
- Differentiates between a system and the surroundings

System

- That part of the universe that is being studied
- In chemistry this is the reactants and the products in a chemical reaction

Surroundings

- Everything else in the universe
- In chemistry, everything other than the reactants and the products in a chemical reaction

Reactions are either...

Exothermic Reaction

- The potential energy of the reactants, H_R, is greater that the potential energy of the products, H_P
- The excess potential energy is converted to random kinetic energy
- Heat flows out of the system

Endothermic Reaction

- The potential energy of the reactants, H_R , is less than the potential energy of the products, H_P
- Energy flows <u>into</u> the system to increase the potential energy of the system

<u>The First Law of Thermodynamics</u>- The change in a systems internal energy (ΔE) is equal to the <u>heat gained</u> by the system (q) plus the <u>work done</u> on the system (W).

$$\Delta E = q + w$$

- In thermodynamics, each changing property has a:
 - 1. number value: which is the magnitude of the change
 - 2. sign: which indicates the direction of the change
 - a. $+ = \underline{\text{into}}$ the system (the amount the system increases)
 - b. -= out of the system (the amount the system decreases)

Ex. 6.1 (p244) Calculate the ΔE for a system undergoing an endothermic process in which 15.6kJ of heat flows & where 1.4kJ of work is done on the system.

How is...

Work Done By a Chemical Reaction

- Work is done by the system on the surroundings when a gas in the system expands against constant pressure
- The expanding gas pushes other gases out of the way
- The work is <u>leaving</u> the system so the sign on it is <u>negative</u>
- Work is done <u>on</u> the system <u>by</u> the surroundings, when a gas in the system is <u>compressed</u> at constant pressure
- The work is going into the system so it is positive
- To calculate work:

 $w = -P\Delta V$ at constant pressure

Expansion: $w = -P\Delta V = -(+)(+)$

therefore w is <u>negative</u>

Compression: $W = -P\Delta V = -(+)(-)$

therefore w is positive

Ex. 6.2 (p245) Calculate the work associated with the expansion of a gas from 46L to 64L at a constant pressure of 15atm.

Enthalpy (H)

- A substances heat content
- This is the total of all forms of energy in a substance
- This cannot be measured
- Only changes in enthalpy (ΔH) can be measured
- At constant pressure, ΔH is the heat flow, q (ΔH =q, derived on p247)
- For a chemical reaction, ΔH =the heat of reaction

$$\Delta H = H_{products} - H_{reactants}$$

•

- For exothermic reactions:
 - O HR>HP
 - o so $\Delta H = H_p(smaller) H_R (larger) = negative$
 - o exothermic = $-\Delta H$ (leaving the system)
- For endothermic reactions:
 - \circ $H_R < H_P$
 - o so $\Delta H = H_p(larger) H_R(smaller) = positive$
 - o exothermic = $+\Delta H$ (entering the system)

Ex. 6.4 (p247) for CH₄,
$$\Delta$$
H = -890 kJ/mol Δ H for burning 5.8g CH₄=?

Calorimetry

- the science of measuring heat flow
- makes use of a calorimeter

Calorimeter

- a device used to determine heat flow
- the reaction occurs inside an insulated container
- the reaction transfers heat to or from the surrounding H₂O
- the system is not air tight so pressure is constant
- you must know the heat capacity (C) of the surroundings (usually H₂O)

Heat Capacity (C)

- also called "specific heat capacity"
- the amount of energy needed to raise the temperature of 1gram of a substance 1°C
- the units are J/g°C
- to calculate heat flow:

*on formula sheets

q=heat flow

m=mass of substance whose temperature is changing

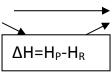
C=heat capacity $(\frac{J}{g^{\circ}C}, \text{ sometimes } \frac{J}{mol^{\circ}C} \text{ for gases})$

 ΔT =the change in temperature, T_f - T_i

- if the surroundings is a dilute solution it is usually treated as being pure H₂O
- the density of dilute solutions is also considered to be the density of H₂O (1g/mL)

 $\underline{\text{Ex.}}$ 50.0mL of 1.0M HCl at 25°C $\underbrace{\text{50.0mL of 1.0M NaOH at 25°C}}_{\text{are mixed}}$ are mixed

T_{final}=31.9°C after the reaction ceases.


How much heat energy was released by this reaction?

(for H₂O: D=1g/mL, C=4.18 J/g $^{\circ}$ C)

Does how the change occurs make a difference in the resulting ΔH ?

<u>Hess's Law</u>- The change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

- Enthalpy is a "state function"
- It depends on what "state" the substances are in
- Change is dependent on the enthalpies of the initial and final states but <u>not</u> the path of change

$$H_R$$
 $Y \rightarrow Y$

• If a series of steps yields a desired overall equation, the sum of the ΔH 's for the steps is the ΔH for the overall reaction

Ex. Given:

$$N_{2 (g)} + O_{2 (g)} \rightarrow 2NO_{(g)}$$
 $\Delta H=180kJ$
 $2NO_{(g)} + O_{2 (g)} \rightarrow 2NO_{2 (g)}$ $\Delta H=-112kJ$

What is the ΔH for the reaction: $N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_{2(g)}$?

Q: What happens to the ΔH if you use a step in the reverse direction?

A: Change the sign on the ΔH !

Ex. 6.7 (p255) For graphite:
$$(C_g)$$

$$C_{g(s)} + O_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H = -394kJ$$
For diamond: (C_d)

$$C_{d(s)} + O_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H = -396kJ$$
What is the ΔH for the reaction: $C_{g(s)} \rightarrow C_{d(s)}$?

Ex. 6.8 (p256) Given: ΔH:

a)
$$2B_{(s)} + 3/2 O_{2 (g)} \rightarrow B_2O_{3 (s)}$$
 -1273kJ

b) $B_2H_{6 (g)} + 3O_{2 (g)} \rightarrow B_2O_{3 (s)} + 3H_2O_{(g)}$ -2035kJ

c) $H_{2 (g)} + \frac{1}{2} O_{2 (g)} \rightarrow H_2O_{(l)}$ -286kJ

d) $H_2O_{(l)} \rightarrow H_2O_{(g)}$ 44kJ

What is the ΔH for the reaction: $2B_{(s)} + 3H_{2 (g)} \rightarrow B_2H_{6 (g)}$?

• The change in the enthalpy when 1 mole of a compound is formed from its elements in the standard state

$$\Delta H_f^o \leftarrow$$
 standard state \leftarrow a formation reaction

Standard State:

- For a gas, pressure = $\underline{1atm}$
- For a solution, concentration = 1M
- For a pure solid or liquid, the solid or liquid state
- ΔH_f^o is a state function
- The ΔH of many reactions can be calculated by using ΔH_f^o of the reactants and products.
- For a chemical reaction:

$$\Delta H^o = \sum \Delta H_f^o$$
 products $-\sum \Delta H_f^o$ reactants * *on formula sheet

- The enthalpy change for a given reaction can be calculated by substacting the enthalpies of formation of the reactants from the enthalpies of formation of the products
- ΔH_f^o are found in Appendix 4
- ΔH_f^o for an element is zero

Why does this work?

• Remember Hess's Law:

 $\Delta H \text{ is the same no matter what path a reaction takes} \\ Reactants \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{reactants} \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \text{so it's the same)} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \text{products} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{o}} \\ \\ \Delta H_{\mathrm{f}}^{\mathrm{$

Ex.
$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$

1. Break the reactants up to form elements:

$$CH_{4 (g)} \rightarrow C_{(s)} + 2H_{2 (g)}$$
 $\Delta H_{1} = -\frac{\Delta H_{f}^{o}}{C} CH_{4} \text{ (reverse reaction so -)}$
 $2O_{2 (g)} \rightarrow 2O_{2 (g)}$ $\Delta H_{2} = 0 (-\frac{\Delta H_{f}^{o}}{C} O_{2}) \text{ (no change)}$

2. Use the elements to form the products:

$$C_{(s)} + O_{2 (g)} \rightarrow CO_{2 (g)}$$
 $\Delta H_3 = {}^{\Delta H_{\rm f}^{\rm o}} CO_2$
 $2H_{2 (g)} + O_{2 (g)} \rightarrow 2H_2O_{(g)}$ $\Delta H_4 = 2{}^{\Delta H_{\rm f}^{\rm o}} H_2O$

Total:
$$\overline{\text{CH}_{4\,(g)} + 2\text{O}_{2\,(g)}} \to \text{CO}_{2\,(g)} + 2\text{H}_2\text{O}_{(g)}$$

- Since the four reactions add up to yield the desired equation, the sum of the four ΔH 's will be the ΔH of the desired equation.
- $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$ or $\Delta H = (\Delta H_3 + \Delta H_4) + (\Delta H_1 + \Delta H_2)$

$$But: \begin{array}{ccc} \Delta H_{f}^{o} & & \\ & D & D \\ -\Delta H_{f}^{o} & D & D \\ & \Delta H_{f}^{o} & D & D \\ \hline \Delta H = \begin{array}{cccc} \Delta H_{f}^{o} & D & D \\ D & D & D \\ \end{array} \\ \begin{array}{ccccc} \Delta H_{f}^{o} & D & D \\ D & D & D \\ \hline \end{array}$$

$$\underline{Ex.\ 6.9}\ (p261) \qquad 4NH_{3\ (g)} + 7O_{2\ (g)} \Rightarrow 4NO_{2\ (g)} + 6H_2O_{(l)}$$

$$\begin{array}{ll} \underline{Ex.\ 6.10}\ (p264) & 2Al_{(s)} + Fe_2O_{3\ (s)} \Rightarrow Al_2O_{3\ (s)} + 2Fe_{(s)} \\ \Delta H = ? & \end{array}$$