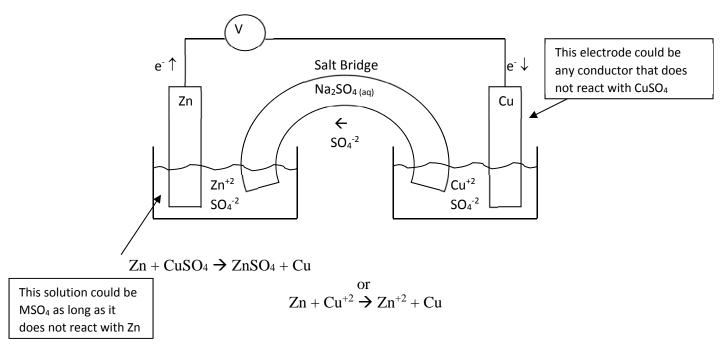
Electrochemistry

Chapter 17

Electrochemistry


- the study of the interchange of electrical and chemical energy
- you can use a chemical reaction to produce an electric current
- you can use an electric current to produce a chemical change

Review

- <u>oxidation</u>- the loss of electrons (reducing agent)
- reduction- the gain of electrons (oxidizing agent)
- <u>half-reaction</u>- an equation showing either the oxidation or reduction half of a redox reaction

Galvanic Cell (Luigi Galvani, 1737-1798)

- a device in which chemical energy is changed into electrical energy
- makes use of a spontaneous redox reaction
- oxidation and reduction must occur in separate chambers

Oxidation $\frac{1}{2}$ Cell $Zn \rightarrow Zn^{+2} + 2e^{-1}$

- Zn goes into solution as Zn⁺² (this electrode loses mass
- electrons flow out of this electrode
- the electrode where oxidation occurs is called the anode

Reduction $\frac{1}{2}$ Cell $Cu^{+2} + 2e^{-} \rightarrow Cu$

- electrons flow into this electrode
- the positive copper ions are attracted to it and reduced out of solution as Cu
- this electrode gains mass
- the electrode where reduction occurs is called the <u>cathode</u>

Anode – oxidation occurs here

- loses mass

Cathode – reduction occurs here

- gains mass

(AnOx, Red Fat Cat)

Salt Bridge

- the anion common to both cells and the bridge flows through it
- it flows from the reduction ½ cell to the oxidation ½ cell
- this keeps the solutions in both ½ cells neutral

Cell Potential

- this is the force "pulling the electrons from the oxidizing ½ cell to the reducing ½ cell
- this is measured in <u>volts</u> by a voltmeter (Alessandro Volta)

Standard Reduction Potential (E⁰)

- the potential for a reduction ½ reaction under standard conditions (1M concentration)
- measured against the potential for the reduction of Hydrogen

$$\circ$$
 2H⁺ + 2e⁻ \rightarrow H₂ \to E⁰ = 0.00

- o compared to itself, it's difference is "0 volts"
- for an oxidation ½ reaction
 - o find the reduction ½ reaction for that substance
 - \circ reverse the reaction and change the sign on the E^0
- the potential of a chemical cell is the <u>sum</u> of the potentials for the oxidation and reduction ½ reactions that are occurring.

$$\begin{array}{cccc} Ex. & Zn + Cu^{+2} \Rightarrow Zn^{+2} + Cu & E^0 \\ & Oxidation: & Zn \Rightarrow Zn^{+2} + 2e^- & 0.76V \\ & Reduction: & Cu^{+2} + 2e^- \Rightarrow Cu & \underline{0.34V} \\ & & E^0_{cell} = 1.10V \end{array}$$

• the number of electrons lost must equal the number of electrons gained

Ex.
$$Fe^{+3} + Cu \rightarrow Cu^{+2} + Fe^{+2}$$

Ox $Cu^0 \rightarrow Cu^{+2} + 2e^-$
Red $Fe^{+3} + 1e^- \rightarrow Fe^{+2}$ (must be multiplied by 2)

so Ox
$$Cu^{0} \rightarrow Cu^{+2} + 2e^{-}$$
 $-0.34V$
Red $2Fe^{+3} + 2e^{-} \rightarrow 2Fe^{+2}$ $+0.77V \pmod{\text{DO NOT}}$ multiply E^{0})
$$E^{0}_{\text{cell}} = +0.43V$$

• to be spontaneous a cell reaction must have a <u>positive</u> E^0 (+ E^0 = spontaneous)

If you are given two half reactions, how can you tell what will be oxidized and what will be reduced?

• remember E⁰ must be positive if a reaction is going to occur

$$Ag^{+} + e^{-} \rightarrow Ag$$
 $E^{0} = 0.80v$
 $2Fe^{+3} + 2e^{-} \rightarrow 2Fe^{+2}$ 0.77V

$$= 0.80v$$

 $0.77V$

What reaction will occur? (To get a positive E^0 , leave Ag alone and reverse Fe^{+3})

Red:
$$Ag^+ + e^- \rightarrow Ag$$

Ox: $Fe^{+2} \rightarrow Fe^{+3} + e^-$

$$E^0 = 0.80v$$

Ox:
$$Fe^{+2} \to Fe^{+3} + e^{-3}$$

$$\frac{-0.77\text{V}}{\text{E}^0_{\text{cell}} = +0.03\text{V}}$$

So:
$$Fe^{+2} + Ag^{+} \rightarrow Fe^{+3} + Ag$$

Faraday (3)

- is the charge on one mole of electrons
- is 96,500 coluombs
 - o coulomb = the quantity of electricity transferred by a current of 1 ampere in 1
- The cell potential (E) is related to the free energy difference (ΔG) for a chemical reaction
 - \circ $\Delta G = -n\mathfrak{T}E$ ***found on the equation sheets
- Using table 17.1 (Standard Electrode Potentials), calculate ΔG^0 for the reaction ex 17.3 $Fe + Cu^{+2} \rightarrow Cu + Fe^{+2}$

Is the reaction spontaneous?

Dependence of E on Solution Concentration

- when you calculate E^0 , all solutions must be in standard state (1M)
- if ther are other than 1M, the E_{cell} will not be equal to E^{0}_{cell}
- if a change in concentration favors the forward reaction, E increases
- if a change in concentration favors the reverse reaction, E decreases

Ex. 17.5 For the reaction

$$2Al(s) + 3Mn^{+2}{}_{(aq)} \rightarrow 2Al^{+3}{}_{(aq)} + 3Mn_{(s)}, \ E^0 = 0.48V$$
 Predict whether E_{cell} is larger or smaller than E^0 when

A)
$$[A1^{+3}] = 2.0M$$

 $[Mn^{+2}] = 1.0M$

B)
$$[A1^{+3}] = 1.0M$$

 $[Mn^{+2}] = 3.0M$

Nernst equation

(Hermann Nernst 1864-1941)

- this equation is used to calculate E for a cell at nonstandard conditions
- it relates E_{cell} to E⁰_{cell}

$$E = E^0 - \frac{.0592}{n} \log Q$$

**Found on equation sheets

where n = the number of moles of electrons transferred $Q = \text{the reaction quotient } ([P]^{coeff} / [R]^{coeff})$

Ex. for the cell

$$2Al_{(s)} + 3Mn^{+2}_{(aq)} \rightarrow 2Al^{+3}_{(aq)} + 3Mn_{(s)},$$
 if $[Al^{+3}] = 1.5M$ $[Mn^{+2}] = 0.5M$ Calculate E

For any cell:

- E or E^0 = the maximum potential before any current has flowed
- as the cell discharges and []'s change, $R \rightarrow P$ less more
- the cell will discharge until the reaction reaches equilibrium
- at equilibrium, E=0 (and Δ G=0)
- at this point the battery is DEAD!!

Electrolysis

- this is using an electric current to make a <u>nonspontaneous</u> redox reaction occur
- this type of cell is called an "Electrolytic Cell"
- the amount of chemical change that occurs depends on the amount of current and how long that current flows.
- current is measured in amperes
 - o 1amp = 1coulomb/second

Ex. What mass of copper is plated out when a current of 10.0 amps passes through a solution containing $Cu^{+2}_{(aq)}$ for 30.0 minutes?

- 1. converting amps and time to coulombs:
- 2. converting coulombs to \mathfrak{F} to mole e^{-}
- 3. Using moles to calculate moles of Cu formed
- 4. $mol Cu \rightarrow gCu$

Ex. 17.9 How long must a current of 5.00A be applied to a solution of Ag⁺ to produce 10.5g of silver metal?