Acids & Bases

Chapter 14

Arrhenius

Acids – general formula is HX

- produce H⁺ (or H₃O⁺) in aqueous solution
- $HX + H_2O \leftarrow \rightarrow H_3O^+ + X^-$

Bases – general formula is MOH (M = metal)

- produce OH in aqueous solution
- $MOH(s) \rightarrow M^+(aq) + OH^-(aq)$

Arrhenius Theory is limited because:

- 1. it's only good for aqueous solutions
- 2. it only dealt with one type of base hydroxides

Brönsted – Lowry

Acid – proton donor (H⁺ is a proton)
Base – proton acceptor
Ex. HCl + H₂O → H₃O + Cl⁻
Acid Base

In general:

$$HA_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)}$$

Acid Base conjugate conjugate
Acid Base

Conjugate Acid – Base Pair

- two substances related by the transfer of a proton (H⁺)
- they have the same formula except that the acid has <u>one more proton</u>
- strong acids have weak conjugate bases
- <u>weak</u> acids have <u>strong</u> conjugate bases

Many acid base reactions can be viewed as "competition" for a proton

$$A^{-} \longleftrightarrow H \longleftrightarrow H_2O$$

The stronger base ends up with the proton (has a greater affinity for it)

Structure of Acids

- any substance containing H⁺ can act as an acid
- the strenth of the acid depends on
 - 1. the strength of the H-X bond
 - 2. the polarity of the H-X bond

1. The stronger the H-X bond, the weaker the acid.

	Bond Strength (Kj/mol)	Acid Type
HF	565	Weak
HCl	427	Strong
HBr	363	Strong
HI	295	Strong

- 2. The more polar the H-X bond, the stronger the acid
 - o the <u>greater</u> the number of oxygen atoms present, the greater the attraction for the pair of

electrons shared between O-H.

- the <u>more O's</u> present in a member of an oxyacid family, the <u>stronger</u> the acid
- o for <u>different</u> central atoms, the <u>greater the charge</u> on the central atom, the stronger the acid
- ex. Strongest → Weakest HClO₄, HClO₃, HClO₂, HClO,

most O's, largest charge on Cl least O's, smallest charge on Cl

ex. Strongest → Weakest

 $HClO_3$ (Cl^{+5}), H_2SO_3 (S^{+4}), H_3BO_3 (B^{+3})

Acid Strength

• determined by the amount of dissociation of the acid in H₂O

$$HA + H_2O = H_3O^+ + A^-$$

K_a= acid dissociation constant

o the larger the value of K_a the stronger the acid

 $HA = H^+ + A^-$ ([H₂O] is so large that it is essentially constant and drops out.)

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Strong Acids

- are considered to be 100% dissociated (you know these 6: HClO₄, HNO₃, H₂SO₄ (for 1 of the H⁺'s), HI, HBr, HCl)
- for strong acids the equilibrium lies far to the <u>right</u>

$$HA \rightarrow \leftarrow H^+ + A^- \quad (\sim 100\% \text{ diss.})$$

- in solution the given $[HA] = [H^+]$
- strong acids have very weak conjugate bases
- for a strong acids K_a=very large (no numeric value)

Weak Acids

• dissociate only a small amount in H₂O

- most of the molecules remain undissociated
- the equilibrium lies far to the <u>left</u>

$$HA \rightarrow H^+ + A^-$$

- weak acids have conjugate bases that are stronger bases than H₂O
- for a weak acid, K_a=a small numeric value

Water

- is an amphoteric substance
- it can act as an acid or a base
- water undergoes "autoionization"

$$H_2O + H_2O = H_3O^+ + OH^-$$

or
 $H_2O = H^+ + OH^-$

• the dissociation constant for H₂O is K_w

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$
or
$$K_{w} = [H^{+}][OH^{-}]$$
at 25°C
$$[H^{+}] = [OH^{-}] = 1.0 \times 10^{-7} M$$

$$\therefore K_{w} = (1 \times 10^{-7})(1 \times 10^{-7}) = 1.0 \times 10^{-14}$$
in any aqueous solution at 25°C
$$[H^{+}] \times [OH^{-}] = 1 \times 10^{-14}$$

If a Solution is:

- Neutral, then [H⁺]=[OH⁻]
- Acidic, then [H⁺]>[OH⁻]
- Basic, then [H⁺]<[OH⁻]
- but in all cases, at 25°C, [H⁺][OH⁻]=1x10⁻¹⁴

$$[H^+] = \frac{K_w}{[OH^-]} \text{ or } [OH^-] = \frac{K_w}{[H^+]}$$

<u>14.3</u> (p654)

Find the $[H^+]$ or $[OH^-]$ and the character of the solution for: a) $1.0 \times 10^{-5} M$ OH

b) 1.0x10⁻⁷M OH⁻

The "p" function

p means "-log of" ex. pX = -log X

pH Scale

• a compact way to represent a solutions acidity ex. $[H^+]=1.0x10^{-9}M$ pH=-log $1.0x10^{-9} \neq 9.0$ $pH=-log[H^+]$

***the # of decimal places in the pH should be the same as the # of sig. figs. in the [H⁺] (on your sci. calculator: $(1.0x10^{-9})(\log 10g)(+/-)$ will give the pH=9)

• each change of 1 on the pH scale indicates a power of <u>10</u> change in the [H⁺]

• the function "p" can be used on other numeric values

ex.
$$pOH = -log[OH^-]$$

 $pK = -logK$

This is a derivation of a formula. You <u>do not</u> need to be able to reproduce it. You only need to be able to work with the final formula.

• for any aqueous solution: $K_w=[H^+][OH^-]$

taking logs of all values: logK_w=log[H⁺]+log[OH⁻]
 negating all terms: -logK_w=-log[H⁺]-log[OH⁻]

• but, -log=p, \therefore $pK_w=pH+pOH$

• and since at 25°C pK_w=-log1.0x10⁻¹⁴=14.00

pH+pOH=14.00 @25°C

14.6 (p657) Human blood, pH=7.41 @ 25°C Calculate pOH, [H⁺] & [OH⁻]

Calculating the pH of Strong Acid Solutions

- strong acids are considered to be 100% dissociated
- therefore [HA]=[H⁺]

ex. What is the pH of a 0.10M HNO₃ solution?

 $[HNO_3]=[H^+]=0.10M$

$$pH = -log[H^+] = -log 0.10 = 1.00$$

Calculating the pH of Weak Acid Solutions

- you must calculate the <u>equilibrium</u> [H⁺]
- you must know the value of Ka for the acid
- you must use the initial [HA] to determine the equilibrium concentrations

ex. What is the pH of a solution that is known to be 1.00M HF?

for HF, K_a=7.2x10⁻⁴ (small K_a so very little shift right)

14.8 (p662) is another example of this type of problem

 $(0.100M \text{ HOCl}, K_a=3.5x10^{-8})$

Percent Dissociation

• Calculating the amount of a weak acid that does dissociate

$$\frac{\text{diss} = \frac{AmountDissociated}{InitialConcentration} x100\% }{\text{14.10 (p666)}} \text{ % diss. of } \text{a)} 1.0M \text{ HC}_2\text{H}_3\text{O}_2 \text{ / } \text{K}_a = 1.8 x 10^{-5} }$$

$$\text{b)} 0.100M \text{ HC}_2\text{H}_3\text{O}_2 \text{ / }$$

Up to now, we've only seen monoprotic acids.

Polyprotic Acids

- contains more than one H⁺
- dissociate in a step wise fashion
- ex. Sulfuric Acid:

$$\begin{array}{ccc} H_2SO_4\!\!=\!\!H^+ + HSO_4^- & K_a\!\!=\!\!very\;large \\ HSO_4^-\!\!=\!\!H^+ + SO_4^{-2} & K_a\!\!=\!\!1.2x10^{-2} & (fairly\;strong\;acid\;for\;2^{nd}\;dissociation) \\ ex.\;Phosphoric\;Acid & \end{array}$$

Bases

• Arrhenius: $MOH \rightarrow M^+(aq) + OH^-(aq)$

• Brönsted-Lowry: a proton acceptor

Strong Bases

• alkali metal hydroxides (NaOH + KOH most common)

• dissociate in H₂O 100%

(Ba(OH)₂+Ca(OH)₂ are considered fairly soluble)

Calculating the pH of a Strong Basic Solution

• for a strong base, [MOH]=[OH⁻]

14.12 (p671) 5.0x10⁻²M NaOH, pH=?

Nonhydroxide Bases

- in an aqueous solution they take a H⁺ from a H₂O molecule
- let B=a base

$$B_{(aq)}+H_2O = HB^+_{(aq)}+OH^-_{(aq)}$$

- solution is basic because OH ions are produced in a solution
- B is usually the anion of a weak acid
- other notable bases are:

i.
$$O^{-2}$$
 (strongest base)
 $O^{-2} + H_2O \rightarrow 2OH^{-1}$

$$NH_3 + H_2O = NH_4^- + OH^-$$

K_b=the equilibrium constant for the reaction of a base with H₂O to form its conjugate acid & OH⁻

B+H₂O=HB⁺+OH⁻

$$K_b = \frac{[HB^+][OH^-]}{[B]}$$

(H₂O is so large it is constant)

o if K_b is small, the base is weak

Calculating the pH of a Weak Base Solution

14.13 (p674) 15.0M NH₃, $K_b=1.8\times10^{-5}$, pH=?

Here's the derivation of the relationship between K_a & K_b :

Acid Base

 $HB=H^{+}+B^{-}$ $B^{-}+H_{2}O=HB+OH^{-}$

 $K_a = [H^+][B^-]$ $K_b = [HB][OH^-]$

[HB] [B⁻]

SO

$$k_a \times k_b = \left(\frac{\begin{bmatrix} H^+ \end{bmatrix} B^- \end{bmatrix} \left(\frac{\begin{bmatrix} HB \end{bmatrix} O H^- \end{bmatrix}}{\begin{bmatrix} B^- \end{bmatrix}} \right)$$

Salts

- o ionic compounds that do not contain H⁺ or OH⁻
- o if soluble in H₂O, they dissociate 100% to form separate ions
- o the ions from the salt can produce a solution that is
 - a. Neutral
 - b. acidic or
 - c. basic

Neutral Solutions

- o salts that contain the <u>anion</u> of a <u>strong acid</u> and the <u>cation</u> of a <u>strong base</u>.
- o neither ion reacts with H₂O so the solution remains neutral
- ex. NaCl (HCl and NaOH)

KNO₃ (HNO₃ and KOH)

Acidic Solutions

A. contain the <u>anion</u> of a <u>strong acid</u> and NH₄⁺ (cation of a weak base that can

lose a

proton

the NH₄⁺ loses a proton NH₄⁺ \longleftrightarrow NH₃ + H⁺ (acid)

ex. 14.19 0.1 M NH₄Cl, for NH₃ $K_b = 1.8 \times 10^{-5}$ Calculate the pH

B. contain the <u>anion</u> of a <u>strong acid</u> and a metal ion with a charge of +3 or

greater

o the ion becomes hydrated in solution

ex. $Al(H_2O)_6^{+3}$

- o the positive charge on the metal ion attracts the electrons in the OH bond
- o this weakens the bond and allows H⁺ to be released

$$Al(H_2O)_6^{+3} \leftarrow Al(H_2O)_5OH^{+2} + H^{+}$$

Basic Solutions

A. contain the anion of a weak acid and the cation of a strong base

ex. NaC₂H₃O₂

 Na^+ does not react with H_2O but $C_2H_3O_2^- + H_2O == HC_2H_3O_2 + OH^-$ (base)

$$k_{b} = \frac{\left[HC_{2}H_{3}O_{2}\right]\left[OH^{-}\right]}{\left[C_{2}H_{3}O_{2}^{-}\right]}$$

if you need to find K_b , $K_b = K_w/K_a$

ex. 14.18 0.30 M NaF, for HF,
$$K_a = 7.2x10^{-4}$$
 pH =

Salts that contain the anion of a weak acid and the cation of a weak base

if $K_a > K_b$ solution is Acidic

 $K_a < K_b$ solution is Basic

 $K_a = K_b$ solution is Neutral

ex. 14.21

A. NH₄C₂H₃O₂

B. NH₄CN

C. Al₂(SO₄)₃

Acid – **Base Properties of Oxides** Oxides of Nonmetals

When dissolved in H₂O, produce acid solutions
 ex. SO₂ + H₂O → H₂SO₃ (acid rain)

o
$$Cl_2O + H_2O \rightarrow 2 HOCl$$

o these are referred to as "Acidic Anhydrides" (acids without water)

Oxides of Metals

o when dissolved in H₂O, produce <u>basic</u> solutions

o ex. Na₂O + H₂O
$$\rightarrow$$
 2NaOH

o CaO +
$$H_2O \rightarrow Ca(OH)_2$$

(remember: $O^{2-} + H_2O \rightarrow 2OH^{-}$

o these are referred to as "Basic Anhydrides" (bases without water)

One more (but little used) theory on Acids & Bases

Lewis Acid – Base Model

- o remember Lewis (electron dot) diagrams.
- o Acid = electron pair acceptor
- o Base = electron pair donor

ex.
$$H^+ + :NH_3 \rightarrow NH_4^+$$

$$BF_3 + :NH_3 \rightarrow F_3BNH_3$$

o This theory is too general to be of much use when studying acids and bases.