Chemical Kinetics

Chapter 12

Kinetics-

• the study of <u>rates</u> and <u>mechanisms</u> of chemical reactions

Rate-

- how fast a reaction proceeds
- can be measured by how fast a reactant is used up or how fast a product is formed
- rate is not constant
- it decreases with time as reactants are used up
- an equation's <u>coefficients relate rates</u> of consumption of reactants and production of products

Ex. $2NO_{2(g)} \rightarrow 2NO_{(g)} + O_{2(g)}$

- NO₂ is being consumed at the same rate that NO is being produced
- O₂ is being produced at ½ the rate of consumption of NO₂

Mechanism

• a series of steps by which the reactants are transformed into the products

Ex. $2H_2 + O_2 \rightarrow 2H_2O$

- 1. $H_2 + O_2 \rightarrow 2OH$
- 2. $OH + H_2 \rightarrow H_2O + H$
- 3. $\frac{H + OH \rightarrow H_2O}{2H_2 + O_2 \rightarrow 2H_2O}$

Rate Determining Step

- the slowest step in a reactions mechanism
- this step determines how fast the reaction proceeds
- the "molecularity" of the rate determining step is reflected in the Rate Law (molecularity = the <u>number</u> & type of particles that are <u>reactants</u> in the slow step)
- the reaction can go no faster than its slow step

Rate Law

- an equation that shows what <u>type of particles</u> are the reactants in the <u>rate determining step</u> (the slow step)
- it must be determined by experiment
- the reaction is carried out a number of times varying the concentration of one reactant at a time

Ex.
$$2H_{2(g)} + 2NO_{(g)} \rightarrow 2H_2O_{(g)} + N_{2(g)}$$

Experiment	Initial []'s (m)	
	[] ~ ()	

	NO	H ₂	Initial Rate $\left(\frac{atm}{\min}\right)$
1	.006	.001	.025
2	.006	.002	.050
3	.006	.003	.075
4	.001	.009	.0063
5	.002	.009	.025
6	.003	.009	.056

Results

- for H₂: if the [H₂] doubles, the rate of the reaction doubles
 - the rate of the reaction is $\propto [H_2]^1$
- for NO: if the [NO] doubles, the rate of the reaction quadruples
 - the rate of the reaction is $\propto [NO]^2$
- for each substance, the exponent ih how many of that particle participate in the rate determining step
- the exponent is referred to as the "Order of the reactant"
- H₂ is a 1st order reactant
- NO is a 2nd order reactant

So: Rate $\underline{\infty}$ [H₂] [NO]²

- to make a proportion an equality you need a proportionality constant, \underline{K}
 - o $\underline{\mathbf{K}}$ = the rate constant
 - characteristic for a specific reaction but varies with temperature

So: Rate =
$$K[H_2][NO]^2$$

- this is a <u>3rd order</u> reaction
- 3 particles must collide as reactants in the rate determining step $(1H_2 + 2NO's)$

In general:

$$2S + 3B \rightarrow C + 4D$$

Rate = $k [A]^n [B]^m$

n & m must be determined experimentally

Ex. 12.1

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \rightarrow 3Br_2(1) + 3H_2O$$

	[BrO ₃ -]	[Br ⁻]	[H ⁺]	Init. Rate (mol/L•s)
1	0.10	0.10	0.10	8.0 X 10 ⁻⁴

2	0.20	0.10	0.10	1.6 X 10 ⁻³
3	0.20	0.20	0.10	3.2 X 10 ⁻³
4	0.10	0.10	0.20	3.2 X 10 ⁻³

Calculate the rate law and the rate constant.

Writing a Mechanism

- 1. Determine the Rate Law
- 2. Write the rate determining step based on the rate law
- 3. Write other steps so that the sum of all the steps yields the overall equation
- 4. Cancel all duplication

Ex. 12.6

$$2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$$

and Rate = $k[NO_2][F_2]$

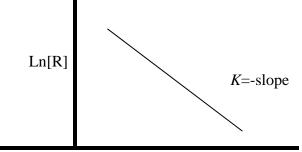
Ex.
$$2NO(g) + Cl_2(g) \rightarrow 2NOCl$$

and rate = k [NO][Cl₂]
Speculate on a mechanism for this reaction.

Speculate on a mechanism for this reaction.

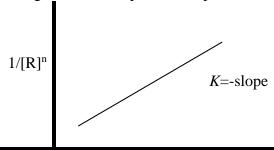
Ex.
$$2H_2 + O_2 \rightarrow 2H_2O$$

If, for this reaction, Rate = k [OH][H], speculate on a mechanism


Ex. $A + 2B + C \rightarrow AB + BC$

Experiment	[A], M	[B], M	[C], M	Rate (mol/l•s)
1	1.00	1.00	2.00	1.00
2	2.00	1.00	2.00	2.00
3	2.00	2.00	2.00	8.00
4	2.00	2.00	4.00	8.00

- a) Rate Law =
- b) k =
- c) If [A] = 1.0M, [B] = 2.0M & C = 3.0M, then Rate =
- d) Speculate on a mechanism for this reaction


Order of a Reactant from Graphing

1st Order Reactant
■ A graph of ln[R] vs time yields a straight line with a negative slope

Orders Greater than 1

- graph $1/[r]^h$ vs. time where n=1, 2, 3 etc.
- one graph will yield a straight line with a positive slope.

(trial and error: tedious)

- For the graph that yields a straight line with a positive slope:
 - o n + 1 = the order of the reactant
 - \circ k = the slope of the straight line

Half Life (t_{1/2})

- The time required for a reactant to reach $\frac{1}{2}$ of its original concentration.
 - o (use up ½ of what you started with)
- For a 1st order reaction (only 1 reactant particle
 - o $t_{1/2}$ is a constant amount of time
 - \circ $t_{1/2}$ does not depend on the initial concentration of the reactant

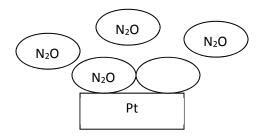
$$t_{1/2} = .693/k$$

Ex. 12.4

A certain first order reaction has a half-life of 20.0 min.

- a) Calculate the rate constant, k, for this reaction.
- b) How much time is required for this reaction to be 75% complete?

- $t_{1/2}$ is **not** constant for other order reactions
 - \circ 2nd order reaction: $t_{1/2} = 1/k[R]$

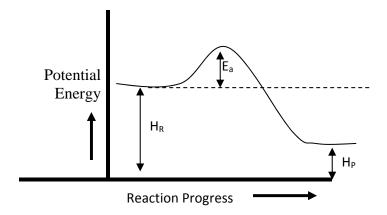

- o $t_{1/2}$ depends on k & R
- o each successive ½ life would be double the previous one because the [R] is half of what it was.

Zero Order Reaction

- occurs in a heterogeneous system
- reaction can only occur where particles can come in contact
- rate is independent of [R]
 - o Rate = $k[R]^0 = k$

Ex. $2N_2O(g) \rightarrow 2N_2(g) + O_2(g)$ on a hot platinum surface (Pt acts as catalyst)

- Only molecules on the Pt can react
- Increasing [N₂O] will not cause more reaction to occur


Collision Model

- Particles must collide to react
- The more particles that must collide in a step, the less likely that the step will occur.
- For a collision to produce the desired change it must
 - o have the required activation energy
 - o have the correct particle orientation

0

1. Activation Energy

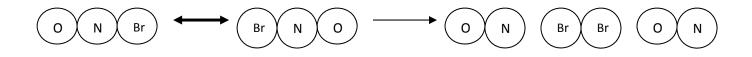
- Amount of energy needed to produce a chemical change
- Energy needed to break bonds in the reacting molecules
- Allows particles to form the "activated complex" (a transition state)

If the specific rate constant is known at two different temperatures, E_a (activation energy) can be calculate:

$$\ln\left(\frac{k_1}{k_2}\right) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_2}\right)$$

$$R = 8.31 \text{ j/mol} \bullet \text{k}$$

$$CH_4(g) + 2S_2(g) \rightarrow CS_2(g) + 2H_2S(g)$$


$$k_1 = 1.1 \text{ L/mol} \cdot \text{s}$$
 $T_1 = 550 \text{°C} = 823 \text{K}$

$$k_2 = 6.4 \text{ L/mol} \cdot \text{s}$$
 $T_2 = 625 \circ \text{C} = 898 \text{K}$

2. Correct particle orientation

• if specific atoms are to bond, those atoms must collide

Ex.
$$2BrNO \rightarrow 2NO + Br_2$$

 $R = 8.31 \text{ j/mol} \bullet \text{K}$

- Factors Affecting Rate of Reaction
 - o Concentration of Reactants
 - (molecularity of rate determining step)
 - o Temperature
 - increasing temperature, increases the rate of chemical reaction
 - at higher temperature, the collisions are more energetic
 - a greater percentage of the collisions have the required activation energy
 - in the rate law, the value of *k* increases

3. Catalysis

- Catalyst a substance that speeds up a reaction without being consumed
 - o it changes the mechanism to one that requires less activation energy (more "energetically favorable")
 - o with lower energy requirement a larger percentage of collisions are effective collisions
 - o the catalyst gets used up in one step, and reformed in a subsequent step

Ex.

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

- NO₂ catalyzes this reaction
- 1 $SO_2(g) + NO_2(g) \rightarrow SO_3(g) + NO(g)$ used up
- 2 $NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$

Ex.

$$2O_{3} \rightarrow 3O_{2}$$

$$1 \qquad Cl + O_{3} \rightarrow ClO + O_{2}$$

$$2 \qquad ClO \rightarrow Cl + O$$

$$3 \qquad O + O_{3} \rightarrow 2O_{2}$$

$$2O_{3} \rightarrow 3O_{2}$$