Liquids & Solids

Cha pter 10

"Condensed States" (def: reduced to a more compact or dense form)

• held in these phases because of attractive forces between the particles

1. Ionic Solids

• held in the solid phase by ionic bonds

2. Molecular Substances

- held in solid phase (& liquid phase) by <u>molecular attractions</u> between neighboring molecules
- the type of molecular attraction depends on the type of molecule

A) <u>Dipole-Dipole Forces</u>

- forces of attraction between neighboring dipoles (polar molecules)
- positive end of one dipole is attracted to the negative end of the next dipole

Ex. +H-Cl-+

B) Hydrogen Bonds

- a particularly strong dipole attraction
- occurs when H is bonded to an atom of small radius & high electronegativity (Ex. F,O,N)
- stronger because:
 - i. the bonds are <u>more polar</u> (larger electronegative difference)
 - ii. the <u>very small size</u> of the hydrogen atoms allows the molecules to get very close to each other

1

• accounts for the unusually high MP & BP of <u>HF, H₂O, & NH₃</u> compared to compounds formed from H & elements from the same group

Compoun	HF	HCl	HB	HI	H ₂	H ₂	H ₂ S	H ₂ T	NH ₃	PH ₃	AsH	SbH
d			r		О	S	e	e			3	3
MP	-83.1	-	-	-50.8	0	-		-49	-77.7	-	-113.5	-88.5
		114.	88.5			85.5				133.		
		8								5		
BP	19.5	-84.9	-	-	100	-	-42	-2	-	-87.4	-55	-17
	4		67.0	35.3		60.7			33.3			
				8					5			

(attractive force \propto charge & $\propto r$)

- C) London Dispersion Forces (Fritz London)
 - "Van der Waals" forces
 - occurs between all molecules but only important for <u>nonpolar</u> substances
 - the only type of attractive force between nonpolar molecules

- asymmetrical electron distribution produces a temporary dipole
- this induces a similar dipole in a neighboring particle

Ex.
$$\left(e^{-}H-H^{+}\right) \leftrightarrow -\left(e^{-}H-H^{+}\right)+$$

- the interaction is very weak and very short lived
- the <u>larger</u> the particle the stronger the force because:
 - i. at any given temperature, larger particles are <u>moving more slowly</u> (KE=½mv²)
 - ii. as atomic number increases, the <u>number of electrons present in the particle</u> <u>increases</u> (greater chance of a momentary dipole arrangement)

Ex.

Compound	Не	Ne	Ar	Kr	Xe	F ₂	Cl ₂	Br ₂	I_2
MP (°C)	-269.7	-248.6	-189.4	-157.3	-111.9	-	-	-7.2	113.5
						219.62	100.98		

Liquid State

- definite volume
- no definite shape
- low compressibility

Surface Tension

- molecular attractions between molecules across a liquid's surface
- directly dependent on the strength of the intermolecular forces
- (in a zero gravity environment, molecular attractions pulling into the body of the liquid would cause the sample to be spherical)

Ex. CCl_4 or $CHCl_3 \rightarrow Which has higher surface tension?$

• both molecules are tetrahedrons

• CCl₄=nonpolar CHCl₃=polar (use models)
London Dispersion Forces Dipole Attraction (=stronger)

Capillary Action

- the spontaneous rising of a liquid in a narrow tube
- for $H_2O \rightarrow polar H_2O$ molecules are attracted to polar molecules in the container wall
- these are <u>Adhesive forces</u>
- the H_2O pulls itself up the wall until the weight of the H_2O balances the tendency of the H_2O to pull up the wall
- the meniscus is concave
 - o the <u>adhesive forces</u> between the H₂O and the glass are stronger than the <u>cohesive</u> forces between neighboring H₂O molecules
- Hg_(l)=nonpolar
 - o convex meniscus
 - o cohesive forces are stronger than adhesive forces

Viscosity

• a measure of a liquid's resistance to flow

- dependent on:
 - i. strength of IMF
 - ii. shape of the molecules

Ex. glycerol $C_3H_5(OH)_3$

H

| H-C-OH Large capacity to form H bonds
| H-C-OH Complex structure inhibits flow

<u>Vaporization</u> – (evaporation)

- particlaes of a liquid overcome intermolecular forces and escape from the body of the liquid
- is a cooling process
 - o losing particles of hightest KE
 - o KE of remaining liquid decreases
- is an endothermic process
 - o energy is needed to overcome the molecular attractions

Heat of Vaporization (ΔH_{vap}) – Enthalpy of Vaporization

- the amount of energy needed to vaporize one mole of a liquid at a pressure of 1 atm
- for H₂O, Δ H_{vap}=41.2 kj/mol (also listed as 40.7 kj/mol)
 - o must overcome strong hydrogen bonds

Vapor Pressure

- the pressure exerted by the particles escaping from the body of the liquid
- depends on:
 - i. Molecular Weight
 - Heavy particles move more slowly & have a smaller tendency to escape
 - ii. Intermolecular Forces
 - The stronger the force, the less tendency to escape

Ex. H₂O – light molecule but has a low vapor pressure due to strong hydrogen bonds

- iii. <u>Temperature</u>
 - Increasing temperature increases vapor pressure
 - At higher temperature a greater number of molecules have enough KE to escape
- Vapor pressures at 2 different temperatures are related

$$\ln\left(\frac{P_1}{P_2}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Where P_1 =vapor pressure at T_1 (Kelvin)

P₂=vapor pressure at T₂

 ΔH_{vap} =heat of vaporization

R=gas constant=8.31j/mol*K (energy term)

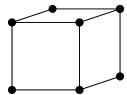
10.6 (p479)

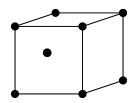
• $P_1=23.8 \text{ torr} \quad \Delta H_{vap}=43.9 \text{ kj/mol} \quad T_1=25^{\circ}\text{C} \quad P_2=? \text{ if } T_2=50^{\circ}\text{C}$

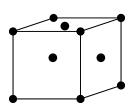
S+P (p188)

• for CCl_{4 (1)} P_1 =0.132atm @ 296K P_2 =0.526atm @ 331K ΔH_{vap} =?

• for CCl₄, what is the vapor pressure at 38°C?


S+P (p119)


• CH₃OH₍₁₎ P₁=0.0526atm @ 5°C P₂=0.132atm @ 34.9°C ΔH_{vap}=?


Solid State

- has definite shape
 has definite volume
 between the particles
- has a crystal structure
 - o a highly regular arrangement of particles
 - o called <u>lattice</u> the position of the particles in a crystalline solid
 - made up by repetition of a <u>"unit cell"</u> (the unit that, upon repetition, produces the entire lattice

- X-ray diffraction is used to determine the lattice structure
- (X-rays directed at the crystal, scattered by particles, resulting patterns analyzed)
- Some solids are amorphous
 - o Have no crystal structure

Ex: glass, plastics

Types of Crystalline Solids

- 1. Atomic Solids
- 2. Molecular Solids
- 3. Ionic Solids

1. Atomic Solids

- the lattice points are occupied by atoms
- metals and network solids

Metals

- have low ionization energy and release their valence electrons
- results in a regular array of kernels at the lattice points in a "sea of mobile electrons"
- the bonds are strong but <u>nondirectional</u>
- it is difficult to separate the atoms but it is easy to move them
- have high thermal and electrical conductivity (mobile electrons)
- are malleable and ductile (nondirectional bonds)

(most are durable and have high melting points)

(exist for a long time without significant deterioration)

Alloys

- a substance that has metallic properties but contains a mixture of elements
- <u>substitutional alloy</u>
 - o some of the host atoms are replaced by atoms of similar size
 - o ex: Brass 66% Cu, 33% Zn (sterling Silver 93% Ag, 7% Cu)
- interstitial alloy (interstitial a space left between atoms
- interstials in the metal are occupied by small atoms
- changes the properties of thehost metal
- ex: steel \rightarrow C atoms in holes between Fe atoms
 - o directional bonding of C atoms makes the alloy stronger and harder

Network Solids

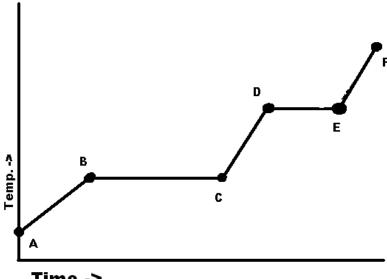
- Atoms at the lattice points held in place by strong covalent bonds
- Have high melting points, are brittle, do not conduct electricity or heat.

Ex. Diamonds

graphite SiO₂ (quartez mp=1713°C)

2. Molecular Solids

- Have <u>molecules</u> at the lattice points
- Have weak attractive forces between the molecules (D-D, H bonds, LDF)
- Have low melting points, do not conduct electricity, are soft


3. Ionic Solid

- <u>Cations and anions</u> occupy the lattice points
- Held together by strong electrostatic attraction between the ions
- Have high melting points, are hard (brittle)
- Do not conduct electricity as solids but <u>fused</u> or <u>dissolved</u> in H₂O are good conductors (mobilize the ions)

Changes of State

Heating Curve

• A plot of temperature vs time as energy is added at a constant rate

Time ->

A-B – solid heating up, KE increases

B-C - solid turns into liquid

Normal Melting Point

- temperature at which the solid and liquid have the same vapor pressure at conditions of 1 atm pressure (total press on the system = 1 atm)
- as solid melts KE remains the same and pot energy increases

Heat of Fusion (H_{fus})

- the amount of energy needed to melt the solid at it's melting point

C-D - <u>liquid heating up</u>, KE increases

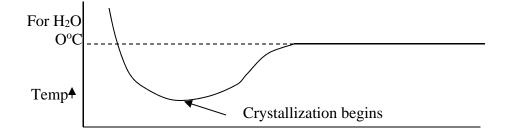
D-E – liquid turning into a gas

Normal Boiling Point

- Temperature at which the vapor pressure of a liquid equals 1 atm. (At any temperature, if vapor pressure = external pressure, the liquid will boil)
- As also as house assume VE is assumed but DE in assume
- As phase change occurs, KE is constant but PE increases
- Energy needed to vaporize the liquid at its boiling point is the Heat of Vaporization (ΔH_{vap})

 $(\Delta H_{vap} > \Delta H_{fus} \text{ because }?)$

E-F – gas heating up, KE increases


(Other possible changes)

Sublimation

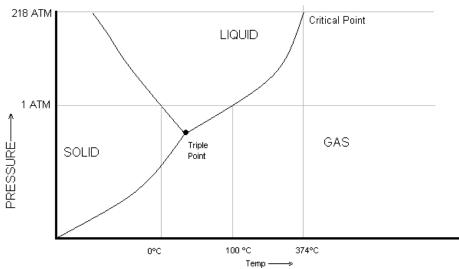
- change from solid to gaseous state without passing through the liquid state Ex. $CO_2(s) \rightarrow CO_2(g)$ $I_2(s) \rightarrow I_2(g)$

Super Cooling

- cooling a liquid below its normal freezing point without freezing occurring
- as cooling occurs, the particles of the liquid do not achieve the organization (right positions) needed to form the solid
 - at some point, the correct positioning finally occurs
 - the exothermic process of freezing raises the temperature back up to the melting point

Time →

Fig 10.46 (p 483)


Superheating

- raising the liquid's temperature to a temperature <u>above its boiling point</u>
- heat must be added RAPIDLY
- particles then have a lot of energy but are not near enough to each other to form a bubble
- when particles finally form a bubble its pressure is greater than 1 atm
- causes "bumping" (boiling chips provide air or starter bubbles)

Phase Diagrams

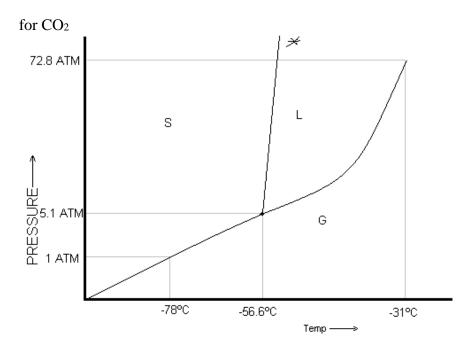
- axes are pressure and temperature
- represents the phase of a substance as a function of P+T

A point on any line represents a point of equilibrium between the two phases.

Triple point

- Temperature and pressure
- For H₂O \rightarrow 4.588 torr, 0.0098 °C

Critical point


- point of critical temperature and critical pressure

Critical temperature

- the temperature above which the vapor cannot be liquefied

Critical Pressure

- the pressure required to liquefy a gas at the critical temperature

- Critical temperature is a measure of the strength of the attractive forces
- Triple Point = 5.1 atm at -56.6°C At 1 atm, CO₂ cannot exist as a liquid, regardless of pressure.