PRECALCULUS CONCEPTUALLY

Function	Domain	Range
$f(x) = x^2$		
$f(x) = \frac{1}{x^2}$		
$f(x) = \sqrt{x}$		
$f(x) = \frac{1}{\sqrt{x}}$		
$f(x) = x^3$		
$f(x) = \frac{1}{x^3}$		
$f(x) = \ln x$		
$f(x) = \left \ln x \right $		
$f(x) = \ln \left x \right $		
$f(x) = e^x$		
$f(x) = e^{-x}$		
$f(x) = e^{ x }$		

1. Give the domains and ranges of the following functions.

2. Complete the following chart about exponential functions of the form $f(x) = ab^x$ for a > 0 and either 0 < b < 1 or b > 1.

Characteristic	0 < b < 1	<i>b</i> > 1
Domain		
Range		
y-intercept		
Horizontal asymptote		
Vertical asymptote		
Increasing/decreasing		
Concavity		

3. If
$$f(x) = \sqrt{x^2 + 1}$$
 and $g(x) = e^{x^2}$, then $f(g(x)) =$ ______ and $g(f(x)) =$ ______.

4. Use properties of logarithms to rank from smallest to largest the following numbers:

 $\ln 30 - \ln 2$, $2 \ln 4$, $\ln 3 + \ln 4$, $\frac{\ln 4}{\ln 2}$

5. a. If $\log(x-a) = n$, then x =_____.

b. If $\ln(x-a) = n$, then x =_____.

6. Complete the following chart about exponential and logarithmic functions.

Function	Increasing/decreasing	Concavity
$f(x) = e^x$		
$f(x) = e^{-x}$		
$f(x) = -e^x$		
$f(x) = e^{x-4}$		
$f(x) = e^{4-x}$		
$f(x) = \ln x$		
$f(x) = \ln\left(-x\right)$		
$f(x) = -\ln x$		
$f(x) = \ln\left(x - 4\right)$		
$f(x) = \ln\left(4 - x\right)$		

7. Find the inverse of the following functions.

- a. $P = 16e^{14t}$
- b. $P = 16 \ln (14t)$

8. Complete the following chart about trigonometric and inverse trigonometric functions. (* denotes principal values)

Functions	Domain	Range
$f(x) = \sin x$		
$f(x) = \cos x$		
$f(x) = \tan x$		
* $f(x) = \arcsin x$		
* $f(x) = \arccos x$		
* $f(x) = \arctan x$		

9. a. If $y = \arcsin x$, then $\cos y =$ _____.

b. If $y = \arcsin x$, then $\tan y =$ _____.

c. If $y = \arctan x$, then $\cos y =$ _____.

d. If $y = \arctan x$, then $\sin y =$ _____.

10. Rank the following functions from smallest to largest as $x \to \infty$:

f(x) = 5x, $g(x) = x^5$, $h(x) = 5^x$, $k(x) = 0.5^x$, $l(x) = 5^{-x}$

11. If
$$f(x) = \frac{x^2 - 1}{x + 1}$$
 and $g(x) = x - 1$, does $f(x) = g(x)$? _____ Why or why not? _____

12. Complete the following charts and answer the questions about power and algebraic functions.

Characteristic	$f(x) = x^2$	$f(x) = x^3$	$f(x) = x^4$	$f(x) = x^5$
General shape				
Domain				
Range				
Increasing when				
Decreasing when				
Concave up when				
Concave down				
when				

Common intersection(s) of all of these functions are _____.

For x > 1, rank the functions from smallest to largest:

For 0 < x < 1, rank the functions from smallest to largest:

Characteristic	$f(x) = x^{-1}$	$f(x) = x^{-2}$	$f(x) = x^{-3}$	$f(x) = x^{-4}$
General shape				
Domain				
Range				
Increasing when				
Decreasing when				
Concave up when				
Concave down				
when				

Common intersection(s) of all of these functions are _____.

For *x* > 1, rank the functions from smallest to largest:

For 0 < *x* < 1, rank the functions from smallest to largest:

Characteristic	$f(x) = x^{\frac{1}{2}}$	$f(x) = x^{\frac{1}{3}}$	$f(x) = x^{\frac{1}{4}}$	$f(x) = x^{\frac{1}{5}}$
General shape				
Domain				
Range				
Increasing when				
Decreasing when				
Concave up when				
Concave down				
when				

Common intersection(s) of all of these functions are ______.

For x > 1, rank the functions from smallest to largest:

For 0 < x < 1, rank the functions from smallest to largest: