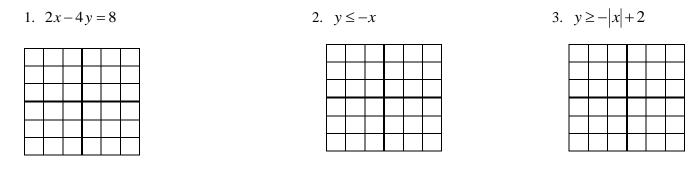
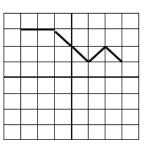
Period_

REQUIRED Pre-requisite Summer Packet for Precalculus and Advanced Precalculus


This packet represents the basic skills that you should have entering into a precalculus course. All work should be done with either no calculator, or at most, a 4-function calculator. All trigonometry problems should be completed WITHOUT the use of a unit circle. You will be assessed on this material within the first two weeks of school.

A basic understanding of graphs (your "library of functions" from Algebra 2) is also required. This includes basic appearance, transformations of, and information about the following graphs:

y = x	$y = x^2$	$y = x^3$	y = x	$y = \ln x$	$y = \log x$	$y = e^x$
$y = \sin \theta$	$y = \cos \theta$	$y = \tan \theta$	$y = \sqrt{x}$	$y = \sqrt[3]{x}$	$y = \frac{1}{x}$	$y = \frac{1}{x^2}$


Space is provided to work on these pages, but if you prefer, you can use your own loose-leaf paper.

Graph each of the following:

4. Find the <u>slope-intercept form</u> of the equation for the line through (4,8) and parallel to y = -3x - 1.

- 5. Solve by completing the square: $2x^2 12x + 4 = 0$
- 6. A. Give the domain of the given function in interval notation.
 - B. Give the range of the given function in interval notation.

7. Write an equation of the line through the points (1,9) and (-1,4) in slope-intercept form.

8. Simplify: (3-6i)(4-i)

9. Simplify: $\sqrt{-36} + \sqrt{-9}$

- 10. Factor each expression:
- A. $3x^3 12x$ B. $x^4 + 7x^2 - 30$ C. $6x^3 + 5x^2 - 4x$
- 11. Solve: 2|2x+5|-6=16

12. Identify the vertex and y-intercept of the function and graph: $y = -3x^2 + 6x - 8$

13. Find the real solutions: $8x^3 - 1 = 0$

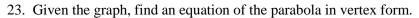
14. Solve the system:
$$\begin{cases} 5x - 3y = 23 \\ 2x + y = 7 \end{cases}$$

15. Find all solutions (real & complex): $x^4 - 3x^3 - 3x^2 - 3x - 4 = 0$ (HINT: Think $\frac{p}{q}$)

16. Find the remainder for $(x^4 - 6x^2 + 3x - 1) \div (x - 2)$ (HINT: Use synthetic division)

		9
		-8
		7
		6
		5
		4
		3
		2
		1
-9 -8 -7 -	6 -5 -4 -3 -2 -1	0 1 2 3 4 5 6 7 8 9
-9 -8 -7 -	6 -5 -4 -3 -2 -1	
-9 -8 -7 -	6 -5 -4 -3 -2 -1	-1 -2 -2
-9 -8 -7 -	6 -5 -4 -3 -2 -1	-1 -2 -3
-9 -8 -7 -	6 -5 -4 -3 -2 -1	
-9 -8 -7 -		
-9 -8 -7 -		
-9 -8 -7 -		
-9 -8 -7 -		

17. Write an equation of the line perpendicular to the *x*-axis through the point (3, -5).


18. Solve: |3x-1| > 4


- 19. Solve by factoring: $12x^2 17x = 40$
- 20. Factor each expression completely: A. $3x^2 + 11x - 20$

B. $x^4 - 10x^2 + 9$

21. Find all solutions (real & complex): $x^3 + 1 = 0$

22. Write a polynomial function with zeros of 3, -1 and 2.

24. Solve for a: 2a+6=ka-h

25. Find all solutions (real & complex): $49x^2 + 25 = 0$

26. Given the matrices
$$A = \begin{bmatrix} 12 & -5 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -7 & 4 \\ 9 & -8 \end{bmatrix}$, find
a) $A + 2B$ b) the determinant of B

27. Solve: $x = \sqrt{x+6}$.

28. Given that f(x) = x+3, and $g(x) = x^2 + x - 6$, find $\frac{g(x)}{f(x)}$ and state the domain of $\frac{g(x)}{f(x)}$.

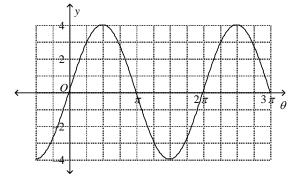
29. Given $f(x) = \sqrt{2x-3}$, find the inverse of f.

30. Solve without a calculator: $2^{y+3} = 16^{y}$

31. Simplify. Your answer should only contain positive exponents.

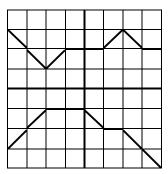
 $\left(\frac{x^{-2}y^{-4}}{4x^{3}y^{-7}}\right)^{-2}$

32. Solve: $\log_3(x+5) + \log_3(x-3) = 2$


33. Solve:
$$\frac{4}{x+3} = \frac{8}{x^2-9}$$

34. Show your work to verify: $\sin\theta \cot\theta \sec\theta = 1$.

For problems 35-36, solve each equation on the interval $0 \le \theta < 2\pi$:


35. $\sqrt{2}\cos\theta - 1 = 0$ 36. $\cos^2\theta + \cos\theta - 6 = 0$

- 37. Find the exact value of $\tan 315^{\circ}$
- 38. Find the amplitude and period for the graph.

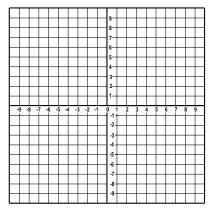
39. For the graphs of f(x) (*upper*) and g(x) (*lower*) shown, find

- A. f(g(1))
- B. (f + g)(2)
- C. (g f)(-1)

40. If f(x) = 3x - 4 and g(x) = 7x - 1, find f(g(x)).

- 41. Simplify without a calculator: $27^{\frac{4}{3}}$
- 42. Evaluate: $\log_5 \sqrt{5}$

43. Evaluate: $\log_5 \frac{1}{5}$


- 44. Evaluate: $\ln e^9$
- 45. Divide and state any restrictions: $\frac{x^2 5x + 4}{x^2 + 3x 28} \div \frac{x^2 + 2x 3}{x^2 + 10x + 21}$

46. Simplify:
$$\frac{4}{x^2 - 5x + 4} - \frac{2}{x^2 - 16}$$

47. Identify any holes, vertical or horizontal asymptotes for the given rational functions. Then sketch their graphs:

$$y = \frac{x+7}{x^2-49}$$
a.
$$y = \frac{x+7}{x^2-49}$$

b.
$$y = \frac{x^2 - x - 12}{x^2 - 2x - 15}$$

48. Change
$$\frac{\pi}{5}$$
 radians to degrees.

49. Find 2 coterminal angles, one positive and one negative, for $\frac{3\pi}{8}$

50. Factor: $8x^3 - 27$

51. Simplify: $csc\theta(sin\theta + cos\theta cot\theta)$

52. Evaluate without a calculator: $sin\frac{19\pi}{6}$ 53. Evaluate without a calculator: $sec\frac{7\pi}{4}$

54. Evaluate without a calculator: $csc \frac{19\pi}{6}$

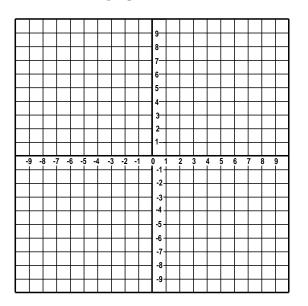
55. Evaluate without a calculator: $\cot \frac{21\pi}{3}$

56. Evaluate without a calculator: $cos \frac{-2\pi}{3}$

57. Evaluate without a calculator: $tan \frac{4\pi}{3}$

58. Solve: $2\cos^2\theta + \cos\theta = 1$ on $[0, 2\pi)$

59. Solve: $4\sin^2\theta - 3 = 0$ on $[0, 2\pi)$.


60. Given the points (3, -8) and (-5, 11),

b. find the distance between the points

61.
$$h(x) = \begin{cases} -2x - 2 & \text{if } x \le 0 \\ 4 - x, & \text{if } x > 0 \end{cases}$$

Evaluate and graph: a. h(3)

b. *h*(0)

