Math 1

Practice 5-2 Equation of a Lines

- I can find the equation of a line parallel to another line through a given coordinate.
- I can find the equation of a line perpendicular to another line through a given coordinate.
- 1. State the slope of the line parallel to y = 5x + 2.

2. State the slope of the line perpendicular to $y = \frac{2}{3}x - 9$.

3. State the slope of the line parallel to $y-4=\frac{-3}{4}(x-10)$.

4. State the slope of the line perpendicular to $y-6=\frac{-1}{5}(x-8)$.

5

5. Write the equation of the line in slope-intercept form through (2, -1) and parallel to $y = (\frac{2}{5}x + 3)$.

$$m = -\frac{2}{5} (2,-1)$$

$$y=mx+b$$

-1=- $\frac{2}{5}(2)+b$

$$-1 = -\frac{4}{5} + b$$

 $y = -\frac{2}{5}x + \frac{1}{5}$

6. Write the equation of the line in slope-intercept form through (1, -5) & perpendicular to $y \neq \frac{1}{8}x + 2$.

$$y = mx + b$$

 $-5 = -8(1) + b$
 $-5 = -8 + b$
 $+8 + 8$
 $3 = b$

$$y = -8x + 3$$

7. Write the equation of the line in point-slope form through
$$(2, -4)$$
 & parallel to $y + 3 = 2(x - 7)$.

$$y+4=2(x-2)$$

8. Write the equation of the line in point-slope form through (-1, 5) & perpendicular to
$$y = \frac{1}{3}x + 4$$
.

$$y-5 = -3(x+1)$$

10. The slope of a line is $\frac{1}{6}$, and the line passes through the points (2, 4) and (a, 7). Find a.

$$\frac{1}{6} = \frac{7-4}{a-2}$$

$$a-2=6(3)$$

$$a - 2 = 18$$