
The Coordinate Plane

🕞⁰ Key Idea

The Coordinate Plane

A **coordinate plane** is formed by the intersection of a horizontal number line and a vertical number line. The number lines intersect at the **origin** and separate the coordinate plane into four regions called **quadrants**.

An **ordered pair** is a pair of numbers that is used to locate a point in a coordinate plane.

ordered pair

EXAMPLE 1 Plotting Ordered Pairs

				1	y				
	(-	-2,	3)	-4-3-					
				-2					
<u> </u>		3	-	1			_		
-	1 -:	3:	2	0			2 :	3 4	$\frac{1}{x}$
				2	_	3.5			
				-3					
			\vdash	-4) (0	, -	3.5)	

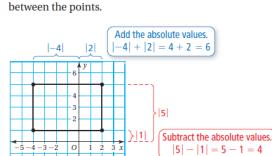
Plot (a) (-2, 3) and (b) (0, -3.5) in a coordinate plane. Describe the location of each point.

- a. Start at the origin. Move 2 units left and 3 units up. Then plot the point.
 The point is in Quadrant II.
- b. Start at the origin. Move 3.5 units down. Then plot the point.The point is on the *y*-axis.

www.PageBorders.net

EXAMPLE 2 Real-Life Application

Re	adin	g	


An archaeologist studies ancient ruins and objects to learn about people and cultures. An *archaeologist* divides an area using a coordinate plane in which each unit represents 1 meter. The corners of a secret chamber are found at (-4, 5), (2, 5), (2, 1), and (-4, 1). What are the dimensions of the secret chamber?

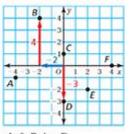
Draw the secret chamber in a coordinate plane.

The length of the chamber is the distance between (-4, 5) and (2, 5). The width of the chamber is the distance between (2, 5) and (2, 1).

Use absolute values to find the distances

(-4,	5)			-6	y		(2,	5)
				- 4				
				-3-				
(-4	1)			2		_	(2,	1)
<u>≺</u> -5 –4	4 -3	-2	2	0	1	1 2	23	x
					r			

The secret chamber is 6 meters long and 4 meters wide.

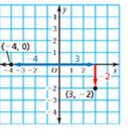

www.PageBorders.net

Appendix B.6 — The Coordinate Plane

EXAMPLE 1 Writing Ordered Pairs

Write the ordered pair that corresponds to (a) point B and (b) point D.

- a. Point B is 2 units to the left of the origin. So, the x-coordinate is -2. Point B is 4 units up, So, the y-coordinate is 4.
 - The ordered pair (-2, 4) corresponds to point B.



- b. Point D lies on the y-axis. So, the x-coordinate is 0. Point D is 3 units down from the origin. So, the y-coordinate is -3.
 - The ordered pair (0, -3) corresponds to point D.

EXAMPLE 2 Plotting Ordered Pairs

Plot the point in a coordinate plane. Then describe its location.

- a. (3, -2) b. (-4,0)
- a. Start at the origin. Move 3 units right and 2 units down. Then plot the point.
 - The point is in Quadrant IV.

- b. Start at the origin. Move 4 units left. Then plot the point.
 - The point is on the x-axis.

Reading

cultures.

An archaeologist

studies ancient ruins

and objects to learn about people and

EXAMPLE 3 Real-Life Application

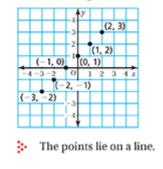
To keep track of where objects are found, an archaeologist divides an area using a coordinate plane.

a. Which objects were found at (-2, -4)?

Start at the origin. Move 2 units left and 4 units down.

Statues were found at (-2, -4).

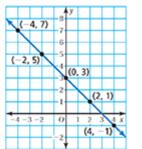
- b. In which quadrants were coins found?
 - Coins were found in Quadrants II and IV.



Appendix B.7 — Graphing in the Coordinate Plane

EXAMPLE 1 Using an Input-Output Table

Plot the data in the input-output table. Describe the pattern.


Input, x	Output, y
-3	-2
-2	-1
-1	0
0	1
1	2
2	3

EXAMPLE 2 Graphing a Function

Make an input-output table for y = 3 - x. Use the inputs -4, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0and 4. Then draw the graph of the function.

x	3 – x	у	(x, y)
-4	3 - (-4)	7	(-4,7)
-2	3 - (<mark>-2</mark>)	5	(-2, 5)
0	3 – <mark>0</mark>	3	(0, 3)
2	3 – <mark>2</mark>	1	(2, 1)
4	3 – <mark>4</mark>	-1	(4, -1)

EXAMPLE 3

Standardized Test Practice

Which	function is shown in the table?

Remember 👂	
You can check your equation by substituting the input values for x in	

the equation.

A	y = 3 - x	B y = −x − 3
C	y = x + 3	D $y = x - 3$

Look at the relationship between the inputs and outputs. Each output y is 3 less than the input *x*. So, the function is y = x - 3.

The correct answer is (D).

Input, x	Output, y
-4	-7
-3	-6
-2	-5
-1	-4
0	-3

EXAMPLE 4 Real-Life Application

An underwater volcano erupts and forms an island. The graph shows the elevation *n* (in fect) of the volcano in relation to the ocean surface. Let *t* represent the number of years since its first eruption. What was the elevation of the volcano when it first erupted? Explain.

200	n			
-100				
4	_			L.
-100	10 2	0 30	40	60
-200	-	\vdash		\vdash
-300		И	+	\vdash
-400	\times	\vdash		\vdash
-500	+	\vdash		\vdash

From the graph, the elevation is -500 feet when t = 0.

So, the volcano first erupted 500 feet beneath the ocean surface.