AP[®] PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS				
Proton mass, $m_p = 1.67 \times 10^{-27}$ kg	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$			
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg	Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$			
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$			
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$			

	meter,	m	kelvin,	Κ	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	Ν	volt,	V		
	ampere,	А	joule,	J	ohm,	Ω		

PREFIXES					
Factor	Prefix Symbol				
10 ¹²	tera	Т			
10 ⁹	giga	G			
10^{6}	mega	М			
10^{3}	kilo	k			
10^{-2}	centi	с			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	р			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
sin $ heta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done <u>on</u> a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP[®] PHYSICS 1 EQUATIONS

MECH	IANICS	ELECTRICITY		
$ \vec{r}_{x} = v_{x0} + a_{x}t$ $x = x_{0} + v_{x0}t + \frac{1}{2}a_{x}t^{2}$ $v_{x}^{2} = v_{x0}^{2} + 2a_{x}(x - x_{0})$ $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$ $ \vec{F}_{f} \le \mu \vec{F}_{n} $ $a_{c} = \frac{v^{2}}{r}$ $\vec{p} = m\vec{v}$	A = acceleration $A =$ amplitude $d =$ distance $E =$ energy $f =$ frequency $F =$ force $I =$ rotational inertia $K =$ kinetic energy $k =$ spring constant $L =$ angular momentum $\ell =$ length $m =$ mass $P =$ power $p =$ momentum $r =$ radius or separation	ELEC $\begin{aligned} \vec{F}_{E} &= k \left \frac{q_{1}q_{2}}{r^{2}} \right \\ I &= \frac{\Delta q}{\Delta t} \\ R &= \frac{\rho \ell}{A} \\ I &= \frac{\Delta V}{R} \\ P &= I \Delta V \\ R_{s} &= \sum_{i} R_{i} \\ \frac{1}{R_{n}} &= \sum_{i} \frac{1}{R_{i}} \end{aligned}$	$A = \text{area}$ $F = \text{force}$ $I = \text{current}$ $\ell = \text{length}$ $P = \text{power}$ $q = \text{charge}$ $R = \text{resistance}$ $r = \text{separation}$ $t = \text{time}$ $V = \text{electric potential}$ $\rho = \text{resistivity}$	
$\Delta \vec{p} = \vec{F} \Delta t$ $K = \frac{1}{2} m v^{2}$ $\Delta E = W = F_{\parallel} d = F d \cos \theta$	T = period T = period t = time U = potential energy V = volume v = speed W = work done on a system x = position	$\lambda = \frac{v}{f}$ $k = \frac{v}{f}$ $k = \frac{v}{v} = \frac{v}{v}$	AVES frequency speed wavelength	
$P = \frac{\Delta E}{\Delta t}$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega = \omega_0 + \alpha t$	y = height $\alpha = \text{angular acceleration}$ $\mu = \text{coefficient of friction}$ $\theta = \text{angle}$ $\rho = \text{density}$ $\tau = \text{torque}$		D TRIGONOMETRY A = area C = circumference V = volume S = surface area	
$x = A\cos(2\pi ft)$ $\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$ $\tau = r_{\perp}F = rF\sin\theta$	$\omega = \text{ angular speed}$ $\omega = \text{ angular speed}$ $\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$	$A = \frac{1}{2}bh$ Circle $A = \pi r^{2}$ $C = 2\pi r$	b = base h = height $\ell = length$ w = width r = radius	
$L = I\omega$ $\Delta L = \tau \Delta t$ $K = \frac{1}{2}I\omega^{2}$ $ \vec{F}_{s} = k \vec{x} $	ωf $T_s = 2\pi \sqrt{\frac{m}{k}}$ $T_p = 2\pi \sqrt{\frac{\ell}{g}}$	Rectangular solid $V = \ell w h$ Cylinder $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$	Right triangle $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$	
$U_s = \frac{1}{2}kx^2$ $\rho = \frac{m}{V}$	$\left \vec{F}_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$ $\vec{g} = \frac{\vec{F}_{g}}{m}$ $U_{G} = -\frac{Gm_{1}m_{2}}{r}$	Sphere $V = \frac{4}{3}\pi r^{3}$ $S = 4\pi r^{2}$	$\tan \theta = \frac{a}{b}$ c $\theta = \frac{1}{2} \frac{a}{b}$	