PRECAROUNUS

What are the **approximate** rectangular coordinates for the point with polar coordinates (5, 30°)?

$$X = 5\cos(30)$$

$$y = 5 \sin(30)$$

2 A sequence is shown below.

Which is the recursive formula for this sequence?

$$t_n = n + 2(t_{n-1} + 1)$$
 $t_2 = 2 + 2(6+1) = 16 (not 12)$

$$\xi \qquad t_n = (t_{n-1} + 1)(n-2) \ t_2 = (6+1)(2-2) = 0 \ (not 12)$$

$$t_n = 2(t_{n-1} + 2) - (n+2)$$
 $t_2 = 2(6+2) - (2+2) = 16-4=12$

I just tested each answer choice

using t = 6 and n = 2, Herefore

trying to find a formula that gives

Now, Check Cand D

$$t_3 = \lambda(10+\lambda) - (3+\lambda) = \lambda(14) - 5 = \lambda 3$$
(not 20)

$$t_3 = 12 + 2(3+1) = 12 + 8 = 20$$

Aguadratic function, f, has zeros P and Q, such that P+Q=5 and $\frac{1}{P}+\frac{1}{Q}=8$. Which choice describes f?

(A)
$$f(x) = 8x^2 - 40x + 5$$
 $P = .128$ $Q = 4.87$ Check $\frac{1}{p} + \frac{1}{Q}$
(B) $f(x) = 8x^2 - 40x - 5$ $P = .122$ $Q = 5.12$

$$f(x) = 2x^2 - 10x + 5$$
 P=, 5635 Q=4.43

$$P(x) = 2x^2 - 10x - 5$$
 $P = -.45$ $Q = 5.45$

All chaices have P+Q=5

Lucy invested \$6,000 into an account that earns 6% interest compounded continuously. Approximately how long will it take for Lucy's investment to be valued at \$25,000?

A lamppost is located 418 feet from a building. The angle of elevation from the 5 base of the lamppost to the top of the building is 32.3°. Approximately how tall is the building?

$$\int_{0}^{\frac{\pi}{2}} x + \tan 3a.3 = \frac{x}{418}$$

$$418 \cdot \tan (3a.3) = x$$

PREFCALGULUS

6 Two functions are shown below.

$$T(x) = {}^-x$$
$$P(x) = 10x + 2$$

$$P(T(3))=10(-3)+2$$

= -28

What is the value of P(T(3)) - T(P(3))?

$$T(P(3)) = -(32)$$

$$-28-(-32)$$

(B) 4

D ~4

watch your negatives!

7 A piecewise function is shown below.

$$f(x) = \begin{cases} cx + 1, & x \le 2 \\ cx^2 - 1, & x > 2 \end{cases}$$

For what value of c does $\lim_{x\to 2} f(x)$ exist?

Must approach same value on the left and night

A)-
$$2xH$$
 $x \le 2$ - 3 on left
- $2x^2I$ $x > 2$ - 9 on right

B)
$$-1x+1$$
 $x \le 2$ -1 on left $-1x^2-1$ $x > 2$ -5 on right

What are the polar coordinates of (4, 9)? - Quadrant

$$(\sqrt{97}, 114^{\circ})$$

c
$$(\sqrt{13}, 66^{\circ})$$

D
$$(\sqrt{13}, 114^{\circ})$$

$$\chi^2 + \gamma^2 = r^2$$
 $\tan \theta = \frac{9}{4}$

A sequence is shown below. 9

$$1, 3, 3^2, 3^3, \ldots$$

How many terms of the sequence must be added together for the sum to equal Solve by hand 3,280?

(It would probably be)
quicker to guess and
Check)

$$S = \frac{11}{1-3} = 1093 \times 1000$$

$$5 = \frac{(1-3^8)}{1-3} = 3280$$

$$S = \frac{1(1-3^{\circ})}{1-3}$$

$$3280 = \frac{1-3}{-2}$$

$$-6560 = 1 - 3^{\circ} - 6560 = -3^{\circ}$$

$$-6560 = -3$$

$$\frac{\log(6561)}{\log(3)} = n$$

$$n = 8$$

$$n=8$$

The first term of an infinite geometric sequence is 2. The sum of the sequence is 10 6. What is the common ratio of the sequence?

A
$$\frac{1}{3}$$

$$S = \frac{a_1}{1-r}$$

$$\frac{2}{3}$$

C
$$\frac{3}{3}$$

D
$$\frac{4}{3}$$

$$6-6r=2$$

Which is true of the series shown below? 11

$$\pi + \frac{3\pi}{4} + \frac{9\pi}{16} + \frac{27\pi}{64} + \dots \quad r = \frac{3}{4}$$

Since r 21

The series diverges. Α

B The series converges to
$$\frac{3\pi}{2}$$
.

The series converges to $\frac{4\pi}{3}$. C

Karen recursively generated a sequence of five positive integers by starting with a positive integer, a_1 , and then applying the recursive formula $a_n = a_{n-1} + 3n - 1$ to generate a_n for n = 2, 3, 4, and 5.

If the value of a_5 was 407, what was the value of Karen's starting term, a_1 ?

$$38 = a_2 + 3(3) - 1$$

$$38 = a_2 + 3(3) - 1$$
 $374 = a_1 + 3(2) - 1$

13 What is the distance between y-intercepts of the graph of $x + 8 = 2(y + 3)^2$?

Honzontal Parabola Vertex (-8,-3)

$$8 = 2(y+3)^2$$

Which is a solution set to
$$x + \frac{3x}{x-1} = \frac{x+2}{x-1}$$
?

4 units

$$\begin{array}{ccc}
A & {^{-}1} \\
\hline
B & {^{-}2}
\end{array}$$

$$\frac{X(x-1)}{x-1} + \frac{3x}{x-1} = \frac{x+2}{x-1}$$

$$\frac{X^2+\lambda x}{X} = \frac{X+\lambda}{X}$$

$$\frac{1}{X-1} = \frac{1}{X-1}$$

$$X^2+2x=X+2$$

$$X^{2} + X - 2 = 0$$

$$(X+2)(X-1)=0$$

PRIEDCANKOURUS

Original Function

15 What is the range of the inverse of $y = \tan x$? Domain: $(-\pi/2, \pi/2)$

$$(A) \quad \frac{-\pi}{2} < y < \frac{\pi}{2}$$

$$B \qquad \frac{-\pi}{2} \le y \le \frac{\pi}{2}$$

C
$$0 < y < \pi$$

D
$$0 \le y \le \pi$$

asymptotes! Range: (-00,00)

- 16 James is standing 10 meters away from Samantha.
 - A bird is located in the sky at a point between where James and Samantha are standing.
 - James is looking up at the bird at an angle of elevation of 74°.
 - Samantha is looking up at the bird at an angle of elevation of 47°.

Approximately how far is the bird from Samantha?

- A 7.6 meters
- B 8.5 meters
- C 11.2 meters
 - D 13.1 meters

$$\frac{X}{\sin 74} = \frac{10}{\sin 50}$$

What is the inverse function of $f(x) = \log_{5}(2x - 1)$?

A
$$f^{-1}(x) = 5^x - 1$$

C
$$f^{-1}(x) = \log_2(5x - 1)$$

D
$$f^{-1}(x) = \log_5 \frac{5x+1}{2}$$

$$\frac{5^{x}+1}{a}=y$$

What is the value of the limit shown below? 18

$$\lim_{n\to\infty}\left(\frac{3^n-1}{3^n}\right)$$

Calculator, Check x values that get really big!

A
$$\frac{1}{3}$$

B
$$\frac{2}{3}$$

$$\lim_{n\to\infty} \frac{3^n}{3^n} - \frac{1}{3^n}$$

$$\lim_{n\to\infty} \frac{3^n}{3^n} - \frac{1}{3^n}$$
takethe
$$\lim_{n\to\infty} 1 - 0 = 1$$

What type of conic section is represented by $r = \frac{8}{16 + 125 \sin \theta}$? (Polar) 19

- Α circle
- В ellipse
- hyperbola
- D parabola

Graph it! (Zoomin !)

James had a rectangular piece of cardboard that was four times as long as it was 20 wide. He wanted to use the cardboard to make a box with no lid. To do this, he first cut a 3-by-3-inch square out of each of the four corners of the piece of cardboard, as shown in the picture below.

length = 4x-6 width=x-6 height=3

Then James folded the cardboard along the four dotted lines shown in the picture. This created an open box with a volume of 336 cubic inches.

What was the width of the sheet of cardboard that James started with?

- Α
- $V = 3(4x-6)(x-6) = 3(4x^2-30x+36)$ 10.5 inches = 12x2-90x +108 В 9.5 inches
- $336 = 12x^2 90x + 108$
- 8.5 inches

7.5 inches

D

- $0 = 12x^2 90x 228$ X = 9.5
- 21

Which expression is equivalent to
$$(\sec \theta) \left(\frac{\sin \theta}{\tan \theta} \right)$$
? $\left(\frac{1}{\cos \Theta} \right) \left(\frac{5 \ln \theta}{\cos \Theta} \right)$

A
$$\cos^2 \theta - \sin^2 \theta$$

B
$$\sin^2\theta - \cos^2\theta$$

C
$$\cot^2 \theta - \csc^2 \theta$$

$$\bigcirc$$
 $\operatorname{csc}^2 \theta - \operatorname{cot}^2 \theta$

$$\frac{1}{(\cos\theta)}\left(\frac{\sin\theta}{(\cos\theta)}\right) = 1$$

and
$$1+\cot^2\theta=\csc^2\theta$$

Suppose that for each foot of land along the street, the annual tax is \$25 per foot. 22 The diagram below shows a plot of land.

About how much is the annual tax for the plot?

SAS Lawof Cosines

$$x^{2} = 28^{2} + 46^{2} - 2(28)(46)(05(80))$$

The function $C(x) = \frac{2.50x + 1.00}{x}$ models the cost per item for a company to 23 produce x items after the first item is made. What is the inverse function of C(x)?

$$A C^{-1}(x) = \frac{1.00}{x - 2.50}$$

B
$$C^{-1}(x) = \frac{x - 2.50}{1.00}$$

C
$$C^{-1}(x) = \frac{x - 1.00}{2.50}$$

D
$$C^{-1}(x) = \frac{2.50}{x - 1.00}$$

$$X = \frac{2.54 + 1}{4}$$

 $4 = 2.54 + 1$

$$yx-2.5y = 1$$

 $y(x-2.5) = 1$

$$y = \frac{1}{x-2.5}$$

PRECALCULUS

A computer rental company charges \$50 to rent a computer for one week. The table below shows the daily late fees the company charges if a computer is returned late.

Days Late	Daily Late Fee
days 1 through 10	\$5
days 11 through 20	\$8
days 21 through 30	\$10

What would be the total cost of renting a computer for one week and returning it 15 days late? 450 + 10(5) + 5(8)

- A \$120
- B \$125
- (C) \$140
 - D \$170
- From a point 100 feet from the base of a building, Angie looks up at a 40° angle to the top of a building. She walks 20 feet closer to the building. At **approximately** what angle must Angie now look up to see the top of the building?
 - A 32°
 - (B) 46°
 - C 60°
 - D 77°

$$tan 40 = \frac{x}{100}$$

 $x = 83.91$ (building)
 $tan \theta = \frac{83.91}{80}$

This is the end of the multiple-choice portion of the test.