Honors Pre-Calculus – Released Exam Practice - 2016

fey

Suppose the function $H(t) = 8.5\sin(0.017t - 1.35) + 12$ models the hours of sunlight for a town in Alaska, where t = 1 is the first day of the year. Based on the function, what is the **approximate** range of daylight hours for the town?

D 5 to 19

A piecewise function is shown below.

$$h(x) = \begin{cases} -2x^2 + 5x + 10 & \text{for } -4 \le x < 3 \\ 2x + 3p & \text{for } 3 \le x \le 5 \end{cases}$$

For what value of p will the function be continuous? X=3 is a potential problem

A
$$\frac{10}{3}$$

$$\frac{\text{Top } x=3}{-\lambda(3)^2+5(3)+10}=7$$

$$\frac{3}{C}$$

В

$$3(3)+3p=7$$
 $3p=1$
 $p=\frac{1}{3}$

The third term of a geometric sequence is 96, and the fifth term is 1,536. What is the sum of the first ten terms of this sequence?

$$_3$$
 . α

$$S_{10} = \frac{6(1-4^{10})}{(1-4)}$$

Try graphing the original, then try 4.7 x 1/9, use the

The equation $y = 4.7x^{\frac{1}{6}}$ is graphed on the coordinate plane. How does increasing the denominator of the exponent transform the graph?

- A The transformed graph will approach a horizontal asymptote while the original graph will not.
- В The transformed graph will not approach a horizontal asymptote while the original graph will.
- C The transformed graph will go to ∞ slower than the original graph as the value of x gets larger.
 - D The transformed graph will go to ∞ faster than the original graph as the value of x gets larger.

Which function has an amplitude that is twice the size and a period that is three times the size of the function
$$y = 3\cos\left(\frac{x}{4} - 1\right) + 2$$
?

A Be careful, if the period is 3 times bigger, that doesn't that doesn't mean Bis! & $y = \frac{3}{2}\cos\left(\frac{3x}{4} + 1\right) - 3$

B = $\frac{1}{4}$ Period = $\frac{2\pi}{4}$ = 8 π

C
$$y = 6\cos(\frac{3x}{4} - 1) + 3$$
 three times bigger = $\frac{34\pi}{4}$

$$R y = \frac{3}{2} \sin\left(\frac{x}{12} + 3\right) - 1 \frac{2\pi}{B} = 24\pi B = \frac{1}{10}$$

(280miles) A plane takes off and travels at an angle of 40° north of east at 110 mph for 2 hours. It then adjusts its path to head 10° west of north and travels in that direction for half an hour at a speed of 100 mph. Approximately how far away is the plane from its starting point?

В 200 miles

C 238 miles

)ISTANCE X2= 2202+502-2(220)(50)(0)(150)

x=248,79

Alternate Solution Resultant Vector = Vector + Vector <168.53,141.41>+<-8.68, 49.24>

249 miles

x=220c0540 y=22051140 R = <159.85, 190.65 > -> magnitude = 248.79

#6 Diagram more Va to the end of VI 40=40 alternationterior Somiles 220 Lawof Cosines

Which function correctly represents the graph below?

Notice, answer chaires are

Positive sine and Positive Cosine (midline (maximum)

$$(A) y = \sin\left(x - \frac{\pi}{3}\right) + 4$$

$$B y = \sin\left(x + \frac{\pi}{3}\right) + 4$$

$$C y = \cos\left(x - \frac{\pi}{3}\right) + 4$$

$$D y = \cos\left(x + \frac{\pi}{3}\right) + 4$$

A Ferris wheel is designed in such a way that the height (h), in feet, of the seat

above the ground at any time, t, is modeled by the function $h(t) = 60 - 55 \sin\left(\frac{\pi}{10}t + \frac{\pi}{2}\right).$

midline Ampitule

y=60

What is the *maximum* height a seat reaches?

- A 55 feet
- В 60 feet
- C 110 feet
- D 115 feet

1		1
()	H	
	. 1	

Which statement is true about the fifth terms of the two sequences below?

Explicit
$$a_n = 3n^2 - 6$$
 $\frac{-3}{3}$ $\frac{6}{6}$ $\frac{21}{42}$ $\frac{42}{69}$ $\frac{69}{9}$ $\frac{69}{12}$ $\frac{1}{3}$ $\frac{1}{3}$

- The fifth term of the recursive sequence exceeds the fifth term of the explicit sequence by 63.
- The fifth term of the explicit sequence exceeds the fifth term of the recursive sequence by 63.
- The fifth term of the recursive sequence exceeds the fifth term of the explicit sequence by 21. 90-69=21
 - D The fifth term of the explicit sequence exceeds the fifth term of the recursive sequence by 21.

Which statement is true about the series shown below?

$$-4 + -2 + -1 + -\frac{1}{2} + -\frac{1}{4} + \dots$$

- \bigcirc A The series converges because |r| < 1.
 - B The series diverges because |r| < 1.
- C The series converges because |r| > 1.
- D The series diverges because |r| > 1.

What is the explicit form of the equation $a_n = a_{n-1} + 2(n-1)$; $a_1 = 1$?

$$A a_n = 2n - 1$$

C
$$a_n = n^2 - 2n + 2$$

D
$$a_n = 2n^2 - 2n - 1$$

$$\frac{1}{1+2(2-1)}$$
, $\frac{7}{3+2(3-1)}$, $\frac{13}{7+2(4-1)}$

previous and 3rd 4th term term term term ag ag

Now, findan answer choice where n=2 gives you3, n=3 gives you7, etc n=4 gives you 13