Happy Lost and Found Day!

- Park your phones
- Start the warm up (on circle table)

Honors Pre-Calculus

Name

Parametric Warmup

Create a table using the given parameter to help you sketch the curve. Then, eliminate the parameter and write a rectangular equation for the curve.

1)
$$x=t-2$$
, $y=\frac{t^2}{2}-2t+2$ $-1 \le t \le 5$
 $t=-1$
 $t=5$
 $t=5$
 $t=4$
 $t=7$
 $t=7$

Write the rectangular equation as a set of parametric equations. Give two different parameterizations.

2)
$$y = 3x^2 + 2x + 1$$

$$\begin{cases} x = t \\ y = 3t^{a} + at + 1 \end{cases}$$

$$\begin{cases}
X = t + 4 \\
Y = 3(t+4)^{2} + 2(t+4) + 1
\end{cases}$$

Crashing	Dianes	or d	a they?
Crasning	rianes	or a	o mey:

name			

1. At time t (in hours), one airplane is located at x=20t and y=10t+35, where x and y are measured in miles. Another airplane is flying at the same altitude and its position is x=25t and y=20t+5.

Eliminate the parameter for airplane 1:

Eliminate the parameter for airplane 2:

Find the intersection of the planes paths:

Do the planes crash?

2. At time t (in hours), one airplane is located at x=10t+30 and y=40t-15, where x and y are measured in miles. Another airplane is flying at the same altitude and its position is x=20t and y=30t+15.

Eliminate the parameter for airplane 1:

Eliminate the parameter for airplane 2:

Find the intersection of the planes paths:

Do the planes crash?

来 2 Decimal Accuracy

Projectile Motion and Parametric Equations

In calculus, a model for <u>projectile motion</u> with no friction is considered, and a "parabolic trajectory" is obtained. If the <u>initial velocity</u> is $\underline{v_0}$ and θ is the <u>initial angle</u> to the <u>horizontal</u>, then the parametric equations for the horizontal and vertical components are:

$$x(t) = v_0 \cos(\theta)t$$
 $gravity(g) = 32 \frac{ft}{sec^2}$ or $9.8 \frac{m}{sec^2}$
 $y(t) = -\frac{1}{2}gt^2 + v_0 \sin(\theta)t + h$

Starting

Neighborization

know the ball leaves his hand from a 38^o angle at 22 m/sec from a height of 1.9 meters above the ground.

Write a set of parametric equations to model this motion

$$\int_{0.8}^{1.8} x = aa \cdot (as(38^{\circ}) \cdot t)$$

$$= (-\frac{1}{2})(9.8)t^{2} + aa \cdot Sin(38^{\circ})t + 1.9$$

b) How far away is the ball after 2.75 seconds?

$$X = 2a \cdot Cos(38)(2.75)$$

 $X = 47.67$ meters

After how many seconds will the ball be 225 feet away from

home plate?

When will the ball finally hit the ground?

$$aph = (-\frac{1}{2})(3a) + 150 \sin(18)t + 3$$

$$t = 2.96 \sec.$$

Since Chris was hoping for a homerun, how do we know whether the ball will clear a 20-ft wall that is 400 ft away?

hori contal vertical 4=20 (400, 20) 1. Hayden kicks for points in a rugby game. He place-kicks the ball with an initial speed of 63 ft/sec at an angle of 46° with the horizontal.

Write a set of parametric equations for the path of the football.

X =	x =		y =	=		
-----	------------	--	-----	---	--	--

- a. How long will it take before the ball hits the ground?
- b. After 1.4 seconds, how far away has the ball traveled?
- c. After 1.4 seconds, how high is the ball?
- d. If the ball heads directly towards the 10-ft high crossbar that is 116 ft from Hayden, will the ball clear the crossbar? How do you know?

Sketch the graph: Make note of the y-int, x-int, and maximum!

2. The center-field fence in a ballpark is 10 feet high and 400 feet from home plate. The baseball is hit 3 feet above the ground. It leaves the bat at an angle θ degrees with the horizontal at a speed of 145 ft/sec
Write a set of parametric equations for the path of the football.
x = y =
If he hits the ball at an angle of 18°,
a) After 1 second, how far has the ball traveled away from home plate?
b) After 1.3 seconds, how high is the ball?
c) What is the maximum height the ball reaches and how long after contact does the ball reach this height?
d) Will he hit a homerun?
e) If he hits the ball at an angle of 23°, will he hit a homerun?
f) Find the minimum angle required for the hit to be a homerun.

(I'm ok if you guess and check!)

3. The quarterback of a football team releases the ball from a height of 7 feet above the playing field. The pass is released at an angle of 35° with the horizontal at a speed of 55 ft/sec.

Write a set of parametric equations for the path of the football.

- a) Find the height of the ball after 1.7 seconds.
- b) Assuming the receiver misses the pass, how many **yards** down field did the ball travel?
- c) Use your calculator to graph the path of the football, label the x-intercept, y-intercept, and approximate its maximum height.

- d) If the receiver can catch a pass between 3ft and 7ft off the ground, how far will he need to run down field to make the catch?
- e) How many seconds does the receiver have to run that distance assuming the quarterback throws the pass immediately?

4. A baseball player hits a line drive to the outfield. The ball leaves his bat at 30 m/sec at an angle of 25° from a height of 1.1 meters. Write a set of parametric equations.

- a) How much time would it take before the ball is 56 meters away from home plate?
- *try solving this algebraically*

b) How high is the ball after 1.4 seconds?

c) How long does it take for the ball to hit the ground?