The function $P(t) = 300e^{(0.018)}$ models the number of bacteria in a population after t minutes.

- What is the meaning of the coefficient of e in the context of the problem?
- What is the meaning of the coefficient of t in the context of the problem?
- · 300 is the initial value when t=0
- · Bacteria is growing 3.8% per minute.

Scientists estimated the number of mosquitoes living in an area in different years.

Year	Mosquitoes (in thousands)
1960	6
1970	8
1980	12
1990	18
2000	34
2010	42

The scientists then decided to use an exponential best-fit model to predict the number of mosquitoes that will be in the area in 2020.

- · Write an equation that the scientists used to make their prediction.
- Use your equation to predict how many mosquitoes will be living in the area in 2020?

 $V = 5.57(1.04aa)^{x}$

2020 When t=60 66.6 thousand mosquitoes A person is on a ride at a carnival. The table below shows approximately how high the person is off the ground after t seconds.

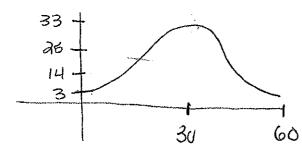
Seconds (t)	Feet off the Ground (h)				
0	3				
10	14				
20	25				
30	.33				
40	25				
50	14				
60	3 :				

- Write an equation of the sine function that best fits the data.
- · What is the meaning of the constant term in the equation you derived?

A window maker uses the graph of a rose curve to create a pattern in stained glass.

- If the window maker uses the equation $r=8\cos4\theta$ to represent the curve, what is the maximum petal length?
- How many petals does the graph have?
- Explain your answers.

→ Since n is even, you need to double it to get 8 petals.


-> The maximum petal length is 8, be cause 8 is "a" or the lead coefficient

Kes

A person is on a ride at a carnival. The table below shows approximately how high the person is off the ground after t seconds.

	Seconds (t)	Feet off the Ground (h)
	0	3
1	10	14
	20	. 25
	30	33
	40	25
	50	14
ĺ	60	3

- Write an equation of the sine function that best fits the data.
- What is the meaning of the constant term in the equation you derived?

Total height 33-3 = 30, So Amplitude = 15

Midline is 15 from maximum, 50 33-15=18 or 15 from minimum, 50 3+15=18

Y=18 midline

-C = Phase Shift

Period=60

Indegrees 360 = 60

B=6

In Radians 2 = 60

B=-30

 $\frac{-C}{6} = 15 - C = 90 C = -90$ (Degrees)

Sine must start on the midline.

So Phase Shift right 15.

 $\frac{C}{30} = 15 - C = \frac{T}{2} C = -\frac{T}{2}$ (radians)

|= 155in(60-90)+18 |= 155in(50-三)+18

"The constant, 18, represents the midline of the sine function.

The chart below shows the amount of insulin in a person's bloodstream after a certain amount of time, t.

t (minutes)	3	15	24	45
Units of Insulin	8.6	4.9	3.1	1.0

Create a best fit exponential function to answer the questions.

- To the nearest tenth, how many units of insulin are in the person's bloodstream at t=0?
- To the nearest percent, what is the absolute value of the percent change per minute of insulin?

Use the piecewise function below to answer each question.

$$h(x) = \begin{cases} -2x^2 + 5x + 10 & \text{for } -4 \le x < 3 & \text{Step 1} \\ 3x + 2 & \text{for } 3 \le x < 7 & \text{Step 2} \\ \sqrt{2x - 5} & \text{for } 7 \le x < 16 & \text{Step 3} \end{cases}$$

- . What is the range for step 1?
- . What is the domain for the entire function?
- What is h(10.5);

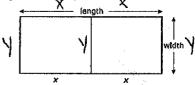
A geologist is analyzing the erosion of a coastline over the past five years. The table below shows the relationship.

2376. 2					
Time (years)	1	2	3	4	5
Cumulative Erosion (feet)	1.01	2.81	6.51	10.14	16.32

- Does a linear, exponential, or power function best fit the data? Explain.
- Write the equation of the function that best models the data.
- Using the equation created, how much erosion can be expected after 8 years?

Check r values

Linear r=,9806


Exponential r= ,9824

Power r=,9977

Power Function is better $Y = .949 \times 1.73$

After Eyears, 34.6ft oferosion

A farmer has 600 yards of fence. He will use some of the fence to enclose a rectangular area. He will use the rest to divide the area into two congruent rectangles, as shown below.

- What is the value of x that results in the largest area?
- What is the largest area that the farmer can enclose?
- What are the length and the width of the outer fence that will produce the largest total area?

$$4x+3y=600 \quad y=\frac{600-4x}{3}$$
Area (big Rectangle) = $(2x)(\frac{600-4x}{3})$

$$A = 1200 \times -8x^{2}$$

Suppose that Kyle has \$1,500 to invest. His investment will earn an interest rate of 8.25% compounded continuously.

- To the nearest cent, what will be the value of Kyle's investment after 6 years?
- To the nearest tenth, how long will it take for Kyle's investment to grow to \$3,000?
- To the nearest tenth, what interest rate would be needed to triple Kyle's investment in 15 years?

. $1500e^{15.5}=4500$ $e^{15}=3$ 15r=1n3 r=.0732

7.32% interestrate The function $f(t) = 36(0.50)^{\frac{1}{3750}}$ models the amount of carbon-14, in mg, remaining in a sample t years after the year 1200.

- What amount of carbon-14 was present in the sample in the year 1200?
- What is the meaning of the coefficient of t in the context of the problem?

$$V = 36(.5)^{\frac{1}{5730}} \pm$$

· The year 1200 is the initial amount (when t=0)

50 36 mg

means that it
5730 means that it
takes 5730 years togo
through one cycle
(one half life)

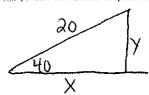
The general equation of an ellipse is shown below.

$$9x^2 - 54x + 25y^2 - 100y - 44 = 0$$

- Write an equivalent standard equation for the ellipse.
 - Describe what the coefficients of x^2 and y^3 in the standard equation tell about this ellipse.

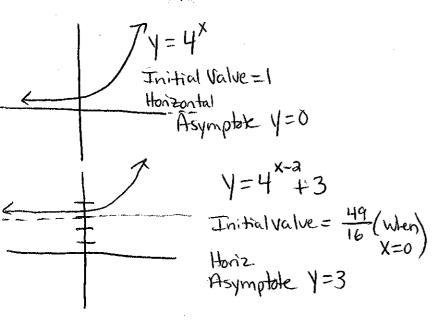
$$9(x^{2}-6x+1)+25(y^{2}-4y+1)=44$$

$$9(x^{2}-6x+9)+25(y^{2}-4y+4)=44+81+100$$


$$9(x-3)^{2}+25(y-2)^{2}=225$$

$$\frac{(x-3)^{2}}{25}+\frac{(y-2)^{2}}{25}=1$$

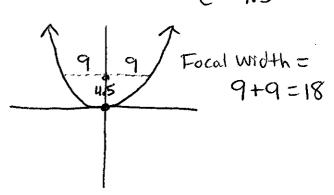
This is a horizontal ellipse Whose major axis is 10 and the minor axis is 6.


A child is pulling a sled through the snow with a force of 20 Newtons at an angle of 40° .

- To the nearest tenth, what is the vertical component of the force?
- . To the nearest tenth, what is the horizontal component of the force?

Let $f(x) = 4^x$.

- Graph f(x 2) + 3.
- Write a description of the transformation that occurred.


The equation $y = \frac{1}{18}x^2$ represents the mirror inside a parabolic iamp.

- What is the focal width of the mirror?
- Use the equation to explain your answer.

$$a = \frac{1}{4L}$$
 where cistle distance to facus
$$\frac{1}{18} = \frac{1}{4C}$$

$$4C = 18$$

$$C = 4.5$$

The function $P(t)=1,440e^{-9.0259t}$ models the number of cars a dealership sold t years after the first year it was open.

- By what percent is the number of cars being sold decreasing each year?
- . How many cars did the dealership sell the year it opened?

Two parametric equations are shown below.

$$x = \frac{3t^2}{2}$$
$$y = 4t - 1$$

- Convert the parametric equations into rectangular form.
- Determine what type of equation the rectangular form describes.