*		Exponential Growth & Decay HW	
		1. Growth Initial Value: 2 Key Factor: 3,5 Rate: 250% inc	
		2. Decay Initial Value: 4.2 Factor: 0.09 Rate: 91% dec 3. Decay Initial Value: 5	
ļ		Factor: 0,33 Rate: 67% dec. 4. Growth Initial Value: 21	
		Factor: 2,5 Rate: 150% inc. 5. Decay Initial Value: 12 Factor: 0,25 Rate: 75% dec.	
		6. $f(x) = 25000 (0.8)^{x}$	
)	7. $f(3) = 12,800$ mice 8. $f(4) = a00,000(1.02)^{t}$ α . $f(10) = 4243,799$	
		,	
9			

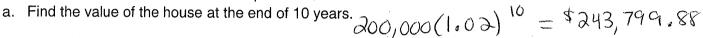
Exponential Growth/Decay HW

Determine if the function represents a growth/decay. Identify the initial value, growth factor and rate. (Do not graph)

- 1. $y = 2(3.5)^x$ 2. $y = 4.2(.09)^x$ 3. $y = 5\left(\frac{1}{3}\right)^x$ 4. $y = 21\left(\frac{5}{2}\right)^x$ 5. $y = 12\left(\frac{1}{4}\right)^x$ IV: 2 2 91% IV=5 66.7% IV=2 150% $F = \frac{150\%}{9}$ IV=12 75% $F = \frac{150\%}{9}$ The mice population is 25,000 and is decreasing by 20% each year. Write a model for this situation.

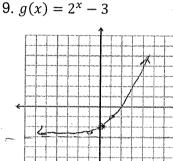
a. Given the model for #6, what will be the mice population after 3 years? $25000(0.80)^3 = 12.800 \text{ m}$

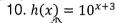
- 7. A house that costs \$200,000 will appreciate in value by 2% each year. Write a function to model the cost of the over time. 200,000 (1.02)x

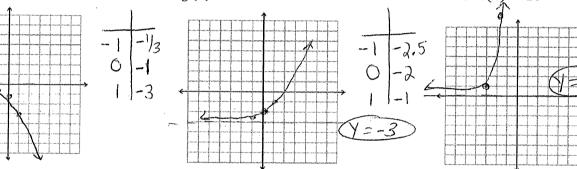


Graph the following functions. State the initial value, domain, range and asymptote.

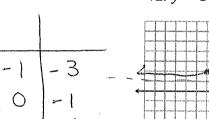
8. $f(x) = -3^x$

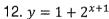


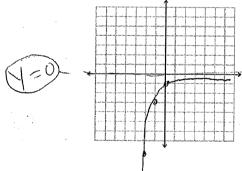


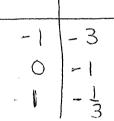


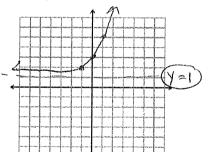
11.
$$f(x) = -3^{-x}$$











1100 0 1000

- 13. The consumption of soda has increased each year since 2000. The function $C(t) = 179(1.029)^t$ models the amount of soda consumed in the world, where C is the amount consumed in billions of liters and t is the number of years since 2000. Graph and sketch the function. How
- much soda was consumed in 2005?

Initial Value 179

2.990 growth

179/1.029) = 206.505 billion

