Given the table below:

x	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$
y	0.5	0	-0.5	0	0.5

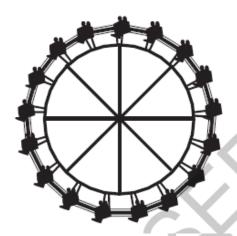
Which function fits the data?

$$A \qquad y = 0.5\cos(2x - \pi)$$

$$B y = 0.5\cos(x - \pi)$$

$$C y = 0.5 \cos \left(2x + \frac{\pi}{2}\right)$$

$$D y = \cos\left(2x + \frac{\pi}{2}\right)$$


In a geometric sequence, $a_1 = 12$ and $r = \sqrt{2}$. What is the **approximate** sum of the first 20 terms of the sequence?

- A 339.4
- B 8,688.9
- C 29,624.9
- D 29,636.9

A bathroom floor has tiles arranged in 9 circles. The innermost circle contains 9 tiles. Each successive circle contains 9 more tiles than the previous circle. How many total tiles are on the bathroom floor?

- A 81
- B 396
- C 405
- D 729

A Ferris wheel has a diameter of 80 feet. Riders enter the Ferris wheel at its lowest point, 5 feet above the ground, at time t=0 seconds. One complete rotation takes 65 seconds.

Which function models a rider's vertical height, h(t), at t seconds?

A
$$h(t) = -80\cos(\frac{2\pi}{65}t) + 5$$

$$B \qquad h(t) = -40\cos\left(\frac{2\pi}{65}t\right) + 45$$

$$C \qquad h(t) = -45\cos\left(\frac{65}{2\pi}t\right) + 40$$

$$D \qquad h(t) = -5\cos\left(\frac{65}{2\pi}t\right) + 80$$

How does the graph of $g(x) = 0.5\cos(2x)$ differ from the graph of its parent function, $f(x) = \cos(x)$, over the interval $-\pi \le x \le \pi$?

- A The amplitude is smaller, and the period is shorter.
- B The amplitude is smaller, and the period is longer.
- C The amplitude is larger, and the period is shorter.
- D The amplitude is larger, and the period is longer.

Two sides of a triangle measure 14 ft and 17 ft, respectively. The included angle is 72°. **Approximately** how long is the third side of the triangle?

- A 18.4 ft
- B 20.3 ft
- C 25.1 ft
- D 30.7 ft

What is the solution to the equation below?

$$\frac{\frac{3}{x} + 2}{\frac{x}{5} + 1} = \frac{15}{x}$$

- A -12
- B ⁻²
- C 2
- D 12

Which is the solution set for x if $2e^{2x} + 5e^x - 12 = 0$?

- A $\left\{\ln\frac{3}{2}, \ln 4\right\}$
- $B \qquad \left\{ \ln \frac{3}{2}, \ln^{-}4 \right\}$
- C {ln 4}
- $D \qquad \left\{ \ln \frac{3}{2} \right\}$

What value of h is needed to complete the square for the equation $x^2 + 10x - 8 = (x - h)^2 - 33$?

- A -25
- B ⁻⁵
- C 5
- D 25

Which expression is equivalent to $\frac{\cos(\theta)}{1-\sin(\theta)}$ - $\tan(\theta)$?

- A $sec(\theta)$
- B $sin(\theta)$
- C $cos(\theta)$
- D $csc(\theta)$

William put the tip of his pencil on the outer edge of a graph of the unit circle at the point (0, $^-$ 1). He moved his pencil tip through an angle of $\frac{4\pi}{3}$ radians in the counterclockwise direction along the edge of the circle. At what angle of the unit circle did William's pencil tip stop?

- A $\frac{\pi}{3}$
- B $\frac{5\pi}{6}$
- $C = \frac{7\pi}{6}$
- D $\frac{5\pi}{3}$

Which is the inverse of $f(x) = 1.5^x + 4$?

A
$$f^{-1}(x) = \frac{x-4}{1.5}$$

B
$$f^{-1}(x) = \frac{\log(x) - 4}{1.5}$$

C
$$f^{-1}(x) = \frac{\log(x-4)}{\log(1.5)}$$

D
$$f^{-1}(x) = \frac{4 - \log(x)}{\log(1.5)}$$

The recursive formula for a sequence is $U_n = U_{n-1} + 12$, where U_n is the *n*th term of the sequence and $U_0 = 7$. Which explicit formula can be used to determine the *n*th term of the sequence?

A
$$7n + 19$$

B
$$7n + 12$$

C
$$7 + 19n$$

D
$$7 + 12n$$

The volume of a rectangular prism is represented by the expression $(x^3 - 2x^2 - 20x - 24)$. If the length is (x - 6) and the height and width are equal, what is the width of the prism?

A
$$x + 2$$

B
$$x-2$$

$$C x + 4$$

D
$$x-4$$

Which is an equation of a parabola that has a directrix of y = 5 and a focus at (2, -1)?

A
$$y = \frac{1}{2}(x + 2)^2 + 2$$

A
$$y = \frac{1}{2}(x + 2)^2 + 2$$

B $y = \frac{1}{8}(x + 2)^2 + 3$
C $y = \frac{1}{8}(x - 2)^2 - 3$

C
$$y = \frac{1}{8}(x-2)^2 - 3$$

D
$$y = \frac{1}{2}(x-2)^2 - 2$$

Given the function:

$$g(x) = \frac{(x-2)(3x+2)}{(x+4)(x-2)(x-6)}$$

- What are the equations of the asymptotes of the function?
- Determine if there are any points of discontinuity. Explain why or why not.
- Describe the end behavior as x approaches $-\infty$ and as x approaches $+\infty$.

The graph of $f(x) = x^2$ will be translated 5 units up and 2 units to the right. Which function describes the graph produced by the translation?

A
$$g(x) = x^2 - 4x + 9$$

B
$$g(x) = x^2 + 4x - 1$$

C
$$q(x) = x^2 - 10x + 27$$

D
$$g(x) = x^2 + 10x + 23$$