

- 1 What transformations have occurred to create the function $f(x) = 3x^3 - 4$ from the function $q(x) = x^3$?
 - The graph of the function has been stretched horizontally and shifted up Α four units.
 - The graph of the function has been stretched vertically and shifted up В four units.
 - The graph of the function has been stretched horizontally and shifted down C four units.
 - The graph of the function has been stretched vertically and shifted down four units.
- 2 An object is launched straight upward from ground level with an initial velocity of 50.0 feet per second. The height, h (in feet above ground level), of the object t seconds after the launch is given by the function $h(t) = -16t^2 + 50t$. At *approximately* what value of t will the object have a height of 28.0 feet and be traveling downward? 16t2+50t = 28
 - 2.39 seconds
 - В 1.84 seconds
 - C 1.56 seconds
 - D 0.73 seconds

l upside down

- What is the range of the function $f(x) = -5 2(x + 3)^2$? 3
 - A. $[-5, \infty)$
 - В $(-\infty, 5]$
 - C, $(-\infty, -51$
 - D $(-\infty, \infty)$

- 4 A wind that is blowing from the northwest toward the southeast can be represented by a vector. The vector has an eastward component and a southward component. If the eastward component has a magnitude of 5.00 miles per hour and the southward component has a magnitude of 15.00 miles per hour, in what direction is the wind blowing?
 - Α The wind is blowing in the direction 71.6° east of south.
 - В The wind is blowing in the direction 67.5° east of south.
 - The wind is blowing in the direction 22.5° east of south. C
 - Ď The wind is blowing in the direction 18.4° east of south.

* Be careful with direction!

5 What value of x satisfies the equation $\log_3(x-4) = 2$?

$$3^2 \times 4$$

A man is standing on level ground 50 feet away from the wall of a building. He 6 looks up at a window on the building. The angle of elevation to the bottom of the window is 28.5°. He then looks up at the top of the building. The angle of elevation to the top of the building is 35°. What is the approximate distance between the bottom of the window and the top of the building?

$$+an(28.5) = \frac{x}{50}$$

D

8.5 feet

$$tan(35) = \frac{h}{50}$$

 $h = 35.01$

- Triangle WXY has the following properties: 7
 - The angle at vertex W is 14°, and the angle at vertex X is obtuse.
 - The side opposite vertex W has a length of 7.00 units.
 - The side opposite vertex X has a length of 9.00 units.

What is the *approximate* length of the side opposite vertex Y?

- Α 1.73 units
- 2.08 units
 - 3.26 units
 - D 5.40 units

ASS (Ambiguaus U)

$$\frac{7}{\sin 4} = \frac{y}{\sin 4.12}$$

$$Sin(X) = .31104$$

 $X = 18.12^{\circ} or X = 161.87$

Consider these two trigonometric functions: 8

$$f(x) = 3\sin(2x) + 4 \qquad \text{No phase Shift}$$

$$g(x) = 3\sin(2x - \frac{\pi}{2}) + 4 \qquad \text{Phase Shift} \qquad \frac{\left(\frac{\pi}{2}\right)}{\left(\frac{\pi}{2}\right)} = \frac{\pi}{2} \cdot \frac{1}{2}$$
The shifted to produce the graph of a ?

How should the graph of f be shifted to produce the graph of g?

- Shift the graph of f to the left $\frac{\pi}{4}$ units to produce the graph of g. Α
- Shift the graph of f to the right $\frac{\pi}{4}$ units to produce the graph of g.
 - C Shift the graph of f to the left $\frac{\pi}{2}$ units to produce the graph of g.
 - D Shift the graph of f to the right $\frac{\pi}{2}$ units to produce the graph of g.

The maximum height, in inches, a ball reaches after its first four bounces is shown 9 in the table below.

Bounce Number	Height (in inches)	
1	42.0	
2	31.5	
3	23.6	
4	17.7	

Which type of function **best** models the data and why?

- an exponential function, because the height of the ball is decreasing by 25% with each bounce
 - В an exponential function, because the height of the ball is decreasing by 75% with each bounce
- a logistic function, because the height of the ball is decreasing by 25% with C each bounce
- D a logistic function, because the height of the ball is decreasing by 75% with each bounce

What is the inverse function of $q(x) = x^3 - 2$? 10

$$(A) g^{-1}(x) = \sqrt[3]{x+2}$$

$$X = \sqrt{3} - \lambda$$

B
$$g^{-1}(x) = \sqrt[3]{x-2}$$

C
$$g^{-1}(x) = \sqrt[3]{x} + 2$$

$$X = \sqrt{3} - \lambda$$

$$X + \lambda = \sqrt{3}$$

$$3\sqrt{X + \lambda} = \gamma$$

$$D g^{-1}(x) = \left(\frac{x-2}{3}\right)^3$$

- RELEASED ITEMS PRECALCULUS -

What are the polar coordinates of the point $(-2\sqrt{3}, 2\sqrt{3})$, where $0 \le \theta \le 360$? 11

A
$$(2\sqrt{6}, 150^{\circ})$$
 and $(-2\sqrt{6}, 210^{\circ})$

$$(-213)^2 + (25)^2 = r^2$$

(B)
$$(2\sqrt{6}, 135^{\circ})$$
 and $(-2\sqrt{6}, 315^{\circ})$

C
$$(2\sqrt{6}, 120^{\circ})$$
 and $(-2\sqrt{6}, 240^{\circ})$

D
$$(2\sqrt{6}, 30^{\circ})$$
 and $(-2\sqrt{6}, 330^{\circ})$

$$\tan(\theta) = \frac{2\sqrt{3}}{2\sqrt{3}} = -1$$

Which equation is the rectangular form of the polar equation $r = \frac{2}{1 + \cos \theta}$? 12

A
$$x^2 + 4y = 4$$
 Vertical parabola

$$B \times x^2 + y^2 = 4$$
 Circle

$$\widehat{C} \quad y^2 + 4x = 4$$

D
$$y^2 - 4x = 4$$

$$r+rcos\theta=2$$

$$\sqrt{\chi^2 + \gamma^2} + \chi = 2$$

$$\sqrt{\chi^2 + \gamma^2} = 2 - \chi$$
 Square both sides

$$X^2 + y^2 = 4 - 4x + x^2$$

$$y^2 + 4x = 4$$

13 Two parametric equations are shown below, where $t \ge 0$.

$$x = \frac{1}{3}\sqrt{t} + 3$$
 $x - 3 = \frac{1}{3}\sqrt{t}$ $3x - 9 = \sqrt{t}$
 $y = 4t^2 - 7$ $(3x - 9)^2 = -t$

Which nonparametric equation can be used to graph the curve described by the parametric equations?

A
$$y = \frac{4}{9}(x + 1) - 7$$

B
$$y = \frac{4}{3}(x + 3) - 7$$

C
$$y = 36(x - 1)^4 - 7$$

$$D y = 324(x-3)^4 - 7$$

$$y = 4((3x-9)^2)^2 - 7 = 4(3x-9)^4 - 7$$

14 The formula for a sequence is shown below.

$$a_n = 2a_{n-1} + 3, a_1 = 3$$

Which is another formula that represents the sequence?

(A)
$$f(n) = 3(2^n - 1)$$
 $3(a^2 - 1) = 3$

$$2(3)+3=9$$

B.
$$f(n) = 2n^3 - 3n^2 + 8n + 3 2(1) - 3(1) + 8(1) + 3 + 3$$

C
$$f(n) = 2(n^2 + 1) 2(1+1) = 4$$

D
$$f(n) = 3n^2 + 8n - 1 \ 3(1) + 8(1) - 1 = 10$$

use answer choices, plugin n=1, see if you get 3

When $a_1 = 25,000$, what is the sum of the infinite sequence defined by the equation $a_{n+1} = 0.8a_n$?

What is the end behavior of the function $f(x) = \frac{100}{1 + 5(0.75)^x}$

A
$$\lim_{x\to -\infty} f(x) = 0$$
 and $\lim_{x\to \infty} f(x) = \infty$

$$(B) \lim_{x \to -\infty} f(x) = 0 \text{ and } \lim_{x \to \infty} f(x) = 100$$

$$\bigvee \lim_{x \to -\infty} f(x) = 1 \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = 1 \text{ and } \lim_{x \to \infty} f(x) = 100$$

Use Calculator

Use table as X>0

17 In the piecewise function below, k is a constant.

$$f(x) = \begin{cases} \frac{x^2 - k^2}{x - k}, & x \neq k \\ 4 - k, & x = k \end{cases}$$

What is the value of the limit $\lim_{x \to k^-} f(x)$?

$$\lim_{X\to K} (x+K) = K+K$$

- A -2k
- (B) 2k
- C 0
- D Limit does not exist.

18 What is the value of $\lim_{x\to 3} (x^2 - 3x + 7)$

- A -2
- (B) 7
 - C 25
- D Limit does not exist

19 What is the **approximate** measure of angle x in the triangle below?

60.3°

80.4°

117.1°

130.5°

Α

В

C

The temperature, in degrees F, of the water in a large fish tank is modeled by the function $T(x) = \ln(1+x) + 52.4$, where x is the number of pebbles in the tank. **Approximately** how many pebbles are in the tank if the water is 58.3°F?

21 A series is shown below.

$$1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \dots$$

 $\Gamma = \frac{2}{5}$ Converge

Which statement is true about the sum of the series?

- The series converges to $\frac{7}{3}$. Α
- $5 = \frac{1}{1 \frac{1}{2}} = \frac{5}{3}$
- The series converges to $\frac{5}{2}$. В
- (c) The series converges to $\frac{5}{3}$.
 - The series diverges.
- A circle is graphed using the parametric equations shown below. 22

$$x = 5\cos(t) + 3$$

Graph it!

$$x = 5\cos(t) + 3$$
$$y = 5\sin(t) - 1$$

Where is the center of the circle located?

If we worked it out ...

$$\chi - 3 = 5\cos(t) \rightarrow (x-3)^2 = 25\cos^2 t$$

$$y+1 = 5 \sin(t) \rightarrow (y+1)^2 = 25 \sin^2(t)$$

Add
$$(x-3)^2+(y+1)^2=25(os^2+25sin^2+1)$$

Here $(x-3)^2+(y+1)^2=25(cos^2+1sin^2+1)$

Go to the next page.

$$(x-3)^2+(y+1)^2=25(\cos^2t+\sin^2t)$$

Go to the next page.

10

The polar coordinates of a point are $\left(6, \frac{4\pi}{3}\right)$. What are the rectangular coordinates of the point?

A
$$(3, -3\sqrt{3})$$

B
$$(3, 3\sqrt{3})$$

$$(-3, -3\sqrt{3})$$

D
$$(-3, 3\sqrt{3})$$

