Exponential Functions

The exponential function f is an equation of the form: $f(x) = ab^{x}$ Where $a \neq 0, b > 0$ and $b \neq 1$ a represents the <u>initial value</u>, b represents the <u>growthvoecay factor</u>

Growth & Decay

If 0 < b < 1, then the function decays as x increases. Smaller values of b lead to faster rates of decay $f(x) = ab^{x}$ Via $f(x) = ab^{x}$ Where $f(x) = ab^{x}$ Find $f(x) = ab^{x}$ Find $f(x) = ab^{x}$ If $f(x) = ab^{x}$ If $f(x) = ab^{x}$ Find $f(x) = ab^{x}$ If $f(x) = ab^{x}$ Find $f(x) = ab^{x}$ Fin

Examples: Identify the initial value, the growth/decay, and the rate.

1. $f(x) = 2.5(1.25)^x$ Growth or Decay? Growth

Initial Value?

2. $f(x) = 3.7(2)^x$ Growth or Decay? Growth

Growth/Decay Factor?

Initial Value?

3. $g(x) = 4.3 \left(\frac{1}{10}\right)^x$ Growth/Decay Factor?

Initial Value?

Growth/Decay Factor?

Rate of Growth/Decay Factor?

Initial Value?

Rate of Growth/Decay Factor?

Graphing Exponential Functions

Decay: 0 < b < 1

Domain:

 $f(x) = ab^x$

Range:

Asymptote

- decimals!

1. Population of Concord, NC is 80,975 and grows at a rate of 1.2% per year. Write an exponential function to model this situation.

- 2. Your savings account has an initial deposit of \$1,000 and earns 15% interest each year. Write an exponential function to model the situation. What will be your total balance after 15 year?
- 3. A new truck is sold for \$32,000 and depreciates at a rate of 7% yearly. Write a function that models the value of the truck after t years. What is the value of the truck after 5 years?
- 4. The initial population of bacteria is 3 and grows at a rate of 80% per hour. Write a function that models the population after *h* hours. What is the population after 24 hours?

Exponential Growth/Decay HW

Determine if the function represents a growth/decay. Identify the initial value, growth factor and rate. (Do not graph)

1.
$$y = 2(3.5)^x$$

2.
$$y = 4.2(.09)^x$$

3.
$$y = 5\left(\frac{1}{3}\right)^x$$

4.
$$y = 21\left(\frac{5}{2}\right)^{\frac{5}{2}}$$

3.
$$y = 5\left(\frac{1}{3}\right)^x$$
 4. $y = 21\left(\frac{5}{2}\right)^x$ 5. $y = 12\left(\frac{1}{4}\right)^x$

- 6. The mice population is 25,000 and is decreasing by 20% each year. Write a model for this situation.
 - a. Given the model for #6, what will be the mice population after 3 years?
- 7. A house that costs \$200,000 will appreciate in value by 2% each year. Write a function to model the cost of the over time.
 - a. Find the value of the house at the end of 10 years.

Graph the following functions. State the initial value, domain, range and asymptote.

$$8. f(x) = -3^x$$

9. $g(x) = 2^x - 3$

10. $h(x) = 10^{x+3}$

11
$$f(x) = -3^{-3}$$

13. The consumption of soda has increased each year since 2000. The function $C(t) = 179(1.029)^t$ models the amount of soda consumed in the world, where C is the amount consumed in billions of liters and t is the number of years since 2000. Graph and sketch the function. How

much soda was consumed in 2005?

Phone number: 81010

Text message @hprecals2