Exponential and Logarithmic Function Review

Name: Key

Write each equation in exponential form.

1.
$$\log_8 2 = \frac{1}{3}$$

$$2.\log_5 \frac{1}{125} = -3$$

$$3.\log_a x = y$$

$$a^{Y}=x$$

Write each equation in logarithmic form.

$$4.6^2 = 36$$

$$5.8^3 = 512$$

6.
$$10^3 = 1000$$
 $\log(1000) = 3$

Evaluate using exponent rules:

7.
$$3^{-4} = (81)^{-1}$$

7.
$$3^{-4} = (81)^{-1}$$
 8. $\left(\frac{4}{5}\right)^{-2} = \left(\frac{16}{25}\right)^{-1}$ 9. $\left(\frac{64}{8}\right)^{\frac{1}{3}} = \sqrt[3]{\frac{64}{8}}$

$$9. \left(\frac{64}{8}\right)^{\frac{1}{3}} = \sqrt[3]{\frac{64}{8}}$$

$$10. \left(\frac{81}{64}\right)^{-\frac{1}{2}} = \left(\frac{9}{8}\right)^{-1}$$

Evaluate each logarithm

9.
$$\log_{144} \frac{1}{12}$$

10.
$$\log_2 \frac{1}{4}$$

11.
$$\log_8 \frac{1}{64}$$
 $8^{\times} = \frac{1}{64}$

$$144^{x} = \frac{1}{12}$$

$$2^{\times} = \frac{1}{4}$$

14.
$$\log \sqrt[3]{100}$$

15.
$$\log_3 \frac{1}{3}$$
 $3^{\times} = \frac{1}{3}$

Write each logarithmic expression as a single logarithm, simplify if possible!

$$16. \log_3 5 + \log_3 2$$

17.
$$\log_4 64 - \log_4 4$$

$$18.5\ln(x) - 2\ln(x) + 6\ln(x)$$

$$\frac{\ln(x^{5}) - \ln(x^{2}) + \ln(x^{6})}{\ln(x^{3}) + \ln(x^{6})} = \frac{\ln(x^{q})}{\ln(x^{q})}$$

$$19. 2 \ln(8) + 5 \ln(z)$$

$$20. -\frac{1}{2} \log 16$$

$$21. \ 2\ln(t) + 3\ln(t) - 4\ln(t^3)$$

$$\frac{19.2 \ln(8) + 5 \ln(z)}{\ln(64 + \ln(z)^5)}$$

$$\frac{\ln(64z^5)}{\ln(64z^5)}$$

$$\begin{array}{c} 0. -\frac{1}{2} \log 10 \\ \log 16^{-1/2} \\ \log (\frac{1}{4}) \end{array}$$

21.
$$2\ln(t) + 3\ln(t) - 4\ln(t^3)$$

 $\ln t^2 + \ln t^3 - \ln t^{12}$
 $\ln t^5 - \ln t^{12} = \ln(\frac{t^5}{t^{12}}) = \ln(\frac{1}{t^7})$

Expand each logarithmic expression (Simplify if possible!)

$$22.\log(x^4\sqrt{x-1})$$

23.
$$\log_2 2x^3y^2$$

$$\log_3(2) + \log(x^3) + \log(y^2)$$

23.
$$\log_2 2x^3y^2$$
 24. $\ln(\frac{rs}{\sqrt[3]{t}})$ $\log_3(a) + \log(x^3) + \log(y^2)$ $\ln(r) + \ln(s) - \ln(\sqrt[3]{t})$ $\ln(r) + \ln(s) - \frac{1}{3}\ln(t)$

$$25. \log(4xyz)^2 = \log(16x^2y^2z^2)$$

25.
$$\log(4xyz)^2 = \log(16x^2y^2z^2)$$
 26. $\ln(\frac{x^4\sqrt{y}}{z^5})$ $\ln(x^4) + \ln(\sqrt{y}) - \ln(z^5)$

I :VI HA Y=0 D: (-00,00) R: (0, 00)

D: (-00,00) IV! 43 $R(0, \infty)$ HA! Y=0

D! (-20,00) HA: Y=-1 R: (0, 00)

Find the inverse function

$$28. y = 5^{x+2}$$

$$X = 5^{y+2}$$

$$\log_5(x) = y + 2$$

$$y = \log_5(x) - 2$$

29.
$$y = 6^{x} - 4$$
 $X = 6^{4} - 4$
 $X + 4 = 6^{4}$

$$X = 6^{1} - 4$$

 $X + 4 = 6^{4}$ $\log_{6}(x + 4) = y$

30.
$$y = \log_2(x+7) + 3$$
 31. $y = \log_6(x-1) - 4$ 3

 $X = \log_2(y+7) + 3$ $3 = \log_2(y+7)$ $3 = \log_2(y+7$

31.
$$y = \log_6(x-1) - 4$$
 $x+4 = \log_6(y-1)$ $Y = 6^{x+4} + 1$ $Y = 6^{x+4} + 1$

$$y=ab^{+}$$
 $32.f(x) = 1.2(3)^{x}$ GF: 3

33.
$$f(x) = 3.4 (1.018)^{x}$$
 Role ? 1.8% 34. $f(x) = 3.7 \left(\frac{1}{4}\right)^{x}$ Role 75% $IV(0,3.4)$ $IV!(0,3.7)$ decay

$$f(x) = 3.7 \left(\frac{1}{4}\right)^x$$
 Rate 75%

Identify the rate and initial value

$$35. A(t) = 250e^{.12t}$$

$$36. A(t) = 144e^{-.32t}$$

37.
$$A(t) = 50 \left(1 + \left(\frac{.04}{2}\right)\right)^{2t}$$
 $P(1+\frac{r}{n})^{nt}$
 $TV(0,50)$ 490 growth risrate

38. You bought a new car for \$18,000 and it depreciates 25% each year. Write a function that models the value of the car. a. Find the value of the car after 4 years. $\gamma = 18000 (.75)^{x}$

$$y = 18000(.75)$$

$$10000 = 18000(.75)^{X}$$

$$2555 = 275^{X}$$

39. Initial population of bacteria is 47 and is growing at a rate of 5.2% per year. Write a function $Y = 47(1.052)^{8} = 60.56$ that models the population of the bacteria.

Find the population of bacteria after 5 years.

b. In what year will the population of bacteria reach a population of 80.

$$X \cdot \log(1.052) = \log(1.702)$$

 $X = 10.49$

10.49 years later

- 40. An initial deposit into your saving account of \$2000 and earns 1.2% interest each year. Write a function that models the situation.
 - a. What will your balance be after 10 years?

b. In what year will your savings account have \$10,000

$$2000(1.012)^{x} = 10000$$
 $1.012^{x} = 5$
 $1000(1.012) = 10000$
 $1000(5)$
 $1000(5)$

41. You receive an inheritance of \$1500 and decide to invest it at an interest rate of 3%. Find the amount in the account after 3 years if interest is compounded quarterly? Monthly?

$$y = 1500(1+0.03)(4.3) = 41640.71$$
 $y = 1500(1+0.03)(12.3) = 41641.08$

42. The population of Wilbraham is 45,000 in the year 2013 people and is continuously increasing at a rate of 1.2% per year. What will the population be in the year 2018?

43. The population of a city is relatively decreasing at a rate of 1.1%. The initial population is

45,500, what will the population be in 4 years?
$$y = 45500 e^{(-01104)} = 43541.41$$

- 44. You are about to invest \$5000 into an account for 5 years. You are given two options for interest.
 - Option D 1.2% interest rate compounded semiannually. Option 2: 0.9% interest rate compounded monthly.

Which option should you chose to maximize the money earned in the account?

Defend your choice!

fend your choice!
$$(2.5) = 5308.23$$
 Vs $5000(1 + \frac{.009}{12})^{(2.5)} = 5230.05$

Use logarithms to solve the exponential equations

45.
$$10^{2y} = 52$$
 $2y \cdot \log(10) = \log(52)$
 $3x + 4 = 6$
 $3x$

$$\frac{4.1}{47.\frac{1}{4}e^{x}} = 5.4$$
 $e^{x} = 20$
 $X \cdot \ln(e) = \ln(20)$
 $X = 2.996$

48.
$$7 + e^{2-x} = 28$$

 $e^{2-x} = 21$
 $(2-x) \ln e = \ln(21)$
 $2-x = 3.04$

$$2-x = 3.04$$
 $-x = 1.04$
 $x = -1.045$

49.
$$32 + e^{7x} = 46$$

 $e^{7x} = 14$
 $7x \cdot \ln(e) = \ln(14)$
 $7x = 2.639$
 $\sqrt{x} = 3.77$

50.
$$2^{2x} = 3^{2x+1} \ 2x \cdot \log(2) = (2x+1) \log(3)$$

 $602x = 0.954x + 0.477$
 $= 0.954x - 0.954x$
 $= 0.352x = 0.477$
 $= 0.352x = 0.477$

Solve the logarithmic equation

51.
$$2\log_4 x = \log_4 16$$
 Log on
$$\log_4 x^2 = \log_4 16$$
 Both siles
$$x = \pm 4$$
53. $\log_5(2x+1) = 1$ Expansional Famil
$$5 = 2x + 1$$

$$5 = 2x + 1$$

$$4 = 2x$$

$$7.38 = 3x + 2$$

$$57.$$

A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10-minute period.

Time in Minutes (x)	Temperature in ^o F (y)
	1802
2	1658
§4	146.3
	185/4
S	127.7
	MIO5

52.
$$\log(x) + \log(x + 15) = 2$$
 $\log(x^2 + 15x) = 2$
 $\log(x^2 + 15x) = 2$

b. Use your equation to estimate the temperature after 5 minutes.

c. Use your equation to find the time it takes to cool the soup to 90 degrees. (Show your work!!)

$$180.376(.953)^{x} = 90$$

 $.953^{x} = .49895$
 $x \log(.953) = \log(.49895)$
 $x = 14.44$ minutes

(Challenge – Optional Math Funsies) Traces of burned wood found along with ancient stone tools in an archaeological dig in Chile. The wood was found to contain approximately 1.67% of the original amount of carbon-14. The equation $A(t) = A_0 e^{kt}$ models the amount $A(t) = A_0 e^{kt}$ models th