$$x=r \cdot \cos \theta \quad y=r \cdot \sin \theta \quad \tan \theta = \frac{y}{x}$$ $$x^{2}+y^{2}=r^{2} \quad \text{Folar}(r,\theta)$$ Converting Equations (Polar/Rectangular) lowing equations from its rectangular form to centered at (0,0) solve for (1,0) (1,0 Convert the following equation from its rectangular form to its polar form: $$x^2 + y^2 = 25$$ Convert the following equation from its rectangular form to its Circle r=a, centered at $$(x-2)^2 + y^2 = 4$$ polar form: $x^{2}-4x+4+4^{2}=4$ ra-4x = Convert the following equation from its rectangular form to its polar form: $$x = 5$$ $$\frac{r \cdot \cos \theta}{\cos \theta} = \frac{5}{\cos \theta}$$ $$r = \frac{5}{\cos \theta}$$ polar form: y = -3 Convert the following equation from its rectangular form to its $$\frac{\text{F.Sinb}}{\text{Sinb}} = \frac{3}{\text{Sinb}}$$ $$\frac{3}{\text{V}} = \frac{3}{\text{Sinb}}$$ Convert the following equation from its polar form to its Circle, centered at pole, radius 5. Convert the following equation from its polar form to its rectangular form (hint: complete the square is needed) $r = 8 \cos \theta$ $$r = 8 \cos\theta$$ $$L_3 = 8.L.\cos\theta$$ $$\chi^2 + y^2 = 8 \times$$ $$(x-4)^{2}+y^{2}=16$$ Convert the following equation from its polar form to its rectangular form (hint: complete the square is needed) $$r = 3 \sin(\theta)$$ $$x^{2} + y^{2} = 3 \cdot r \cdot sim\theta$$, $x^{2} + y^{2} = 3 \cdot y$ ## **Converting Polar and Rectangular Equations: Practice** Write each rectangular equation in polar form. 1. $$x^2 + y^2 = 36$$ 2. $$x^2 + y^2 = 3y$$ 3. $$x = -2$$ 4. $$y = 6$$ 5. $$x^2 + (y+3)^2 = 25$$ 6. $$x^2 + y^2 = 6x$$ Write each polar equation in rectangular form. 7. $$r = 4$$ 8. $$r = 4 \cos \theta$$ 9. $$r = 5sin(\theta)$$ 10. $$r = 5cos(\theta)$$ WRITE THE OTHER FORM OF THE GIVEN EQUATION 1. $$(x-3)^2 + y^2 = 9$$ 2. $$x = 2$$ 3. $$r = 4\cos(\theta)$$ $$4. x^2 + y^2 = 3$$ 5. $$r = 2\sin(\theta)$$ 6. $$y = -4$$