Happy Fight Procrastination Day! - Park your phones - Start Warm up on the board - HW ?'s # Translating Word Problems into Algebraic Expressions 1) Two integers have a sum of 24. If the first integer is called *m*, create an expression for the second integer in terms of m. $$m+x=a+$$ $\chi=a+-m$ 2) The perimeter of a rectangle is 100. If the width is called *w*, create an expression for the length in terms of w. 2L+2W=100 2L = 100-2W L = 50-W wis the width The perimeter of a right triangle is 30. The hypotenuse is 13. Assuming the triangle is not isosceles and one leg is called x, create an expression for the other leg. X+M+13=30 X+M = 17 M=17-X 4) A rectangle has a perimeter of 50. If the length is called L, create an expression length is L for the width in terms of L. Width is 25-L 5) Two integers have a sum of 40. The first integer is called x, create an expression for the second integer in terms of x. 6) A 3-sided rectangular fence is constructed against the side of a building using 150 feet of fencing. If one side of the fence is called w, create an expression for the length of the fence in terms of w. L=150 L=150-AW 7) I am thinking of three consecutive integers. If the first integer is called y, create an expression for the other two integers 8) Two integers are called x and y. Create an expression that represents their product. PRODUCT = X U 9) Two integers are called x and y. Create an expression that represents the sum of their squares. SUM OF SQUARES = $\chi^2 + \zeta$ # Goal: write an expression w/only I variable. **Creating Polynomials from Word Problems** 1) Two integers have a sum of 24. If the first integer is called m, create a polynomial that Use the previous exercises #1-7, to complete the following problems: represents thei product. 2) The perimeter of a rectangle is 100. If the width is called w, create an expression that represents the area of the rectangle. Area = W(50-W) The perimeter of a right triangle is 30. The hypotenuse is 13. Assuming the triangle is not isosceles and one leg is called x, - a) Create an algebraic expression using Pythagorean Theorem. 🚜 - b) Create an algebraic expression representing the area of the triangle 4) A rectangle has a perimeter of 50. If the length is called L, create an expression For the area of the rectangle in terms of L. 5) Two integers have a sum of 40. The first integer is called x, create an expression for the sum of their squares. - 6) A 3-sided rectangular fence is constructed against the side of a building using 150 feet of fencing. If one side of the fence is called w, create an expression for the area of the fence in terms of w. - 7) I am thinking of three consecutive integers. If the first integer is called y, create an expression that represents the product of the 2nd and 3rd integers such that the product is equal to 306. #### Optimization Problems – using polynomials to maximize and/or minimize! - 1) Two integers have a sum of 40. The first integer is called x. - a. Write a polynomial that represents the product of the two integers in terms of x. - b. Find the numbers that would yield a maximum product. - 2) The perimeter of a rectangle is 200 with a width, w. - a. Write a polynomial that represents the area of the rectangle in terms of w. - Find the dimensions that would yield the <u>maximum</u> area of the box and give the maximum area. - 3) Two integers have a sum of 40 where the first number is called m. - a. Write a polynomial that represents the sum of their squares in terms of m. - b. Find the two integers that would yield a minimum sum of squares. - 4) A 3-sided rectangular fence is constructed against the side of a building. You have 120 feet of fencing material. - a. Write a polynomial that represents the area of the rectangle. - Find the dimensions that would yield the <u>maximum</u> area of the box and give the maximum area. - 1) I am thinking of three consecutive integers. If the product of the 2nd and 3rd integers is 306, find the value of all three integers. - 2) Use quadratic regression to create an algebraic model for the following problem, then use your model to answer the questions. The table below represents the horizontal distance traveled by a baseball that has been hit at various angles: | Angle
(degrees) | Distance
(feet | |--------------------|-------------------| | 10° | 115.6 | | 15° | 157.2 | | 20° | 189.2 | | 24° | 220.8 | | 30° | 253.8 | | 34° | 269.2 | | 40° | 284.8 | | 45° | 285.0 | | 48° | 277.4 | | 50° | 269.2 | | 58° | 244.2 | | 60° | 231.4 | | 64° | 180.4 | a) b) d) What distance will correlate to an angle of 5 degrees? What angle would generate a distance of 273 feet? c) What angle would generate a distance of 200 feet? What angle generates the maximum distance from home plate? 3) Nancy walks 15 meters diagonally across a rectangular field. She then returns to her starting position along the outside of the field. The total distance she walks is 36 meters. What are the dimensions of the field? A high diver jumps off a 10-meter springboard. For h in meters and t in seconds after the diver leaves the board, her height above the water is given by: $$h(t) = -4.9t^2 + 8t + 10$$ - a) Find the x intercepts. Interpret the values in the context of this problem. - b) Find the y intercept and interpret its value in the context of this problem. - c) Identify concavity - d) Find the diver's maximum height _____ - e) How long does it take the diver to reach max height? - f) What domain and range would we use for this model? - g) Sketch the graph: A baseball is popped up by a batter. The height of the ball above the ground after t seconds is given by the function $$f(t) = -16t^2 + 64t + 3$$ - a) Find the x intercepts. Interpret the values in the context of this problem. - b) Find the y intercept and interpret its value in the context of this problem. - c) Identify concavity - d) Find the maximum height of the baseball. _____ - e) How long does it take the baseball to reach max height? - f) What domain and range would we use for this model? - g) Sketch the graph: #### **Word Problem Extra Practice:** - 1) The sum of two numbers is 18. - a. Create a polynomial to represent all possible products - b. What is the maximum possible value of their product? - c. What two numbers would be used to yield the max product? - 2) Suppose that the perimeter of a rectangle is 600 ft. - a. If x represents the width of the rectangle (in feet), then express the length of the rectangle in terms of x as well. - b. Create a polynomial that represents all possible areas of the rectangle. - c. Find the maximum area of the rectangle. - d. Give the dimensions that yield the maximum area. | Creating Polynomials from Word Problems | | |--|--| | 3) The sum of two numbers is 22.a. If the first integer is called x, define the second integer in terms of x. | | | b. Create a polynomial that represents the sum of their squares | | | c. Find the <u>smallest</u> possible sum of their squares. | | | d. What are the two integers that yield this minimum value? | | | 4) A farmer has 200 feet of fencing with which to build a rectangular fence that will have a river as its fourth side. If x represents the width of the rectangle (in feet), then express the length of the rectangle in terms of x as well. | | | a. Create a polynomial that represents all possible areas of the rectangle. | | | b. Find the maximum area of the rectangle. | | | c. Give the dimensions that yield the maximum area. | | | | | | | |