Directions: Work this circuit *without* a calculator or computer! Beginning in cell #1, sketch a graph and/or use analytic techniques to determine the domain or range (as specified). Write your answer in interval notation. Search for your answer. Call that cell #2 and continue in this manner until you complete the circuit.

Answer: $(-\infty, 0]$

#_1_
$$f(x) = \frac{x}{x-2}$$
 Domain

Answer: $[0, \infty)$

#____ $f(x) = e^{x-2} + 2$ Range

Answer: $(-\infty, 2]$

#_____
$$f(x) = |x^2 - 4| + 3$$
 Range

Answer: $[-3, \infty)$

#____
$$K(w) = \frac{1}{w+3}$$
 Domain

Answer: $(-\infty, 0) \cup (0, \infty)$

#_____
$$g(x) = \frac{-4x+1}{2x-3}$$
 Range

Answer: $(-\infty, 3]$

#____
$$h(x) = x^{\frac{2}{3}} - 2$$
 Range

Answer: $[-2, \infty)$

#____
$$f(x) = \frac{2x^2}{x^2-1}$$
 Range

Answer: $(-\infty, 2) \cup (2, \infty)$

#_____
$$f(x) = \sqrt{x-2}$$
 Domain

Answer: $(-2, \infty)$

#____
$$f(t) = 2 \cos t$$
 Range

Answer: $(-\infty, \infty)$

#_____
$$f(x) = \frac{x^2 - 1}{x}$$
 Domain

Answer: [2,∞)	Answer: [-2,0]
# $g(x) = \frac{2x}{x^2 - 4}$ Domain	# $x(t) = -5t^2 + 10t - 3$ Range
Answer: $[2,3) \cup (3,\infty)$	Answer: $(-\infty, -2) \cup (-2, \infty)$
# $v(t) = 3 - t^2$ Range	# $f(x) = \begin{cases} x-2 , x \le 3 \\ 5x^2, x > 3 \end{cases}$ Range
Answer: [-2,2]	Answer: (2,∞)
# $P(t) = e^{t^2} - 4$ Range	# $g(x) = \ln(x+2)$ Domain
Answer: $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$	Answer: [3,∞)
# $h(x) = \frac{x}{x^2+4}$ Domain	# $g(x) = \sqrt{-x}$ Domain
Answer: $(-\infty, 0] \cup (2, \infty)$	Answer: $(-\infty, -3) \cup (-3, \infty)$
# $g(\theta) = -1 + \sin \theta$ Range	# $f(x) = \frac{\sqrt{x-2}}{x-3}$ Domain

© Virge Cornelius 2016