Sound and Hearing Ch 154.16

Longitudinal Waves

- Medium goes in the same direction of wave movement
- Has compression and rarefaction
 - Wavelength is equal to one compression and one rarefaction.
 - **Frequency** is the number of compressions that pass a point in a second.
 - Amplitude is the amount of compression.
 - **Velocity** of sound depends on the medium and its temperature.

Properties of Sound waves

Longitudinal waves

• speed- travels at different speeds in different media fresh water- 1510m/s Salt water- 1550m/s air- 343m/s Aluminum- 5000m/s 15.2 chart

Intensity- intensity of a wave's energy flowing through an area measured in Decibels, dB In = Power I = A

Int= $P/4 \prod r^2$

Loudness- physical response to sound

Pitch- frequency of sound as you hear it. **Pitch** is the highness or lowness of a sound.

The higher the frequency, the higher the pitch.

- Sensitivity of the human ear ranges from 20 Hz to 20,000 Hz.
- Ultrasonic waves are higher than 20,000 Hz.
- Infrasonic waves are lower than 20 Hz.
- **Sound you can feel is infrasonic.

high pitch

ruebens tube

A CRACKER

- The noise made by the pistol shrimp is not caused by the claws hitting each other - as scientists used to believe - but by a jet of water created by the impact
- This tiny stream spurts out at 60mph, creating a low pressure 'bubble' in its wake. When this collapses, it makes a bang louder than a rocket launch or jet engine
- For a tiny fraction of a second, temperatures in the bubble soar to more than 4,426C (8,000F)
- The popping also creates a

flash of light which lasts for a billionth of a second

- Divers say that colonies of the shrimp sound like sizzling fat
- When rivals meet, they

compete by seeing which can make the loudest noise

■ If a shrimp's larger 'snapping' claw is damaged in a fight, the smaller one grows to replace it

The Doppler Effect

Change in frequency due to motion of source, listener, or both

doppler effect 2

Example nascar, or fire truck

Sonic Boom- breaking of sound barrier

http://www.kettering.edu/~drussell/Demos/doppler.html

sound barrier bull whip sound bull whip whip crack

Instruments

alter pitch by changing frequency of standing waves

change tension, length, and amplitude

• Resonance increased amplitude over time because of additive energy.

Like a swing, or trampoline

- Music uses specific pitches and sound quality that follows a regular pattern.
- Noise has no pattern and no definite pitch.

Harmonics $F_n = n(v/2L)$

glass voice

violin waves

bridge collapse 2

Beats- the up and down sound of dissonance. beat frequency how many times you hear the beat per second fb= the difference in frequency between the two sounds

A satellite is 100km above a car sends down a radio wave at 95.1 MHz. You are standing 100m away from the car, how long does it take for the sound to get to your ear from the satellite?

- -Ch14 pg 470 MC: 22 Green 8,9,23
- Ch15 pg502 M(:20,2) 11,12,13,21,47
 - Ch 16 Pg 532 MC 20,21,22 7,28,29,31,33
 - -ch 1705 568 MC 19,21 3,5,10,11,12,14,15,21,22,28,29
 - Ch 18 pg 604 MC: 16,17,18
 11,14,29,31,33,35,37,38
 - Ch 19 pg 631 MC: 23

ruebens tube

sound barrier

bull whip sound

glass voice

bridge collapse 2

violin waves

doppler effect

doppler effect 2

high pitch

bull whip

whip crack