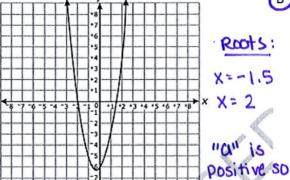
Warm-Up

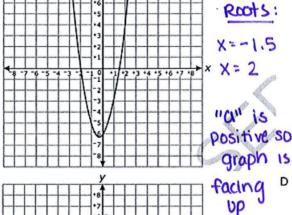
What is the smallest of 3 consecutive positive integers if the product of the smaller two integers is 5 less than 5 times the largest integer?

The larger leg of a right triangle is 3 cm longer than its smaller leg. The hypotenuse is 6 cm longer than the smaller leg. How many centimeters long is the smaller leg?

key on next page

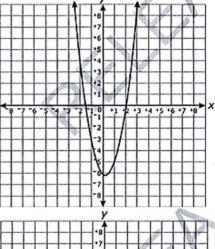

```
2. What is the smallest of 3 consecutive positive integers if the product of the smaller
          two integers is 5 less than 5 times the largest integer?
 Ist: X
                    1st \times 2^{nd} = 5 \times 3^{rd} - 5 \quad (X-5)(X+1) = 0
2nd: X+1
                   (X)(x+1) = 5(x+2)-5
                                                   x-5=0
                                                                 X+1=0
3rd : X+2
                   X^2 + X = 5X + 10 - 5
                   X2 + X = 5 X + 5
                                                                  Answer must
                   X2-4X-5=0
                                                                  be positive
       3. The larger leg of a right triangle is 3 cm longer than its smaller leg. The
          hypotenuse is 6 cm longer than the smaller leg. How many centimeters long is the
          smaller leg?
                       Q2 + 102 = C2
                                                     x2-6x-27=0
                      X^{2} + (x+3)^{2} = (x+6)^{2}
Small: X
                                                     (x-9)(x+3)=0
Large: X+3
                     x2+ (x+3)(x+3)=(x+6)(x+6)
Hypot: X+6
                                                     X-9=0 X+3=0
                X2+ X2+6x+9= X2+12x+36
                                                      X=9
                                                                X = -3
                 2x2+6x+9= x2+12x+36
-x2-12x-36 -x1-12x-36
                                                               Length can't
                                                               be negative
       4. Which term is a factor of 3a^2 + 12a?
```

Check page 8


Complete Quadratic Functions EOC Prep WS

X=Z

Which graph displays the function f(x)=(2x+3)(x-2)?



C

2x=-3

X= -3/2

2 The floor of a rectangular cage has a length 4 feet greater than its width, w. James will increase both dimensions of the floor by 2 feet. Which equation represents the new area, N, of the floor of the cage?

$$A \qquad N = w^2 + 4w$$

$$B \qquad N = w^2 + 6w$$

$$N = w^2 + 6w + 8$$

Length: W+4+2 = W+6 Widtn: W+2

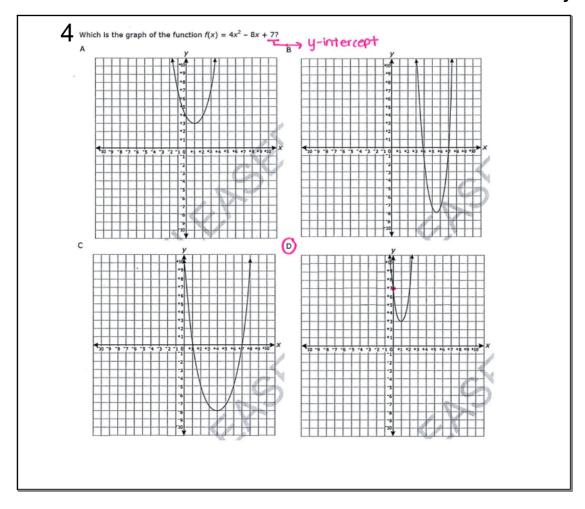
A = Length x width A= (w+6)(w+2)

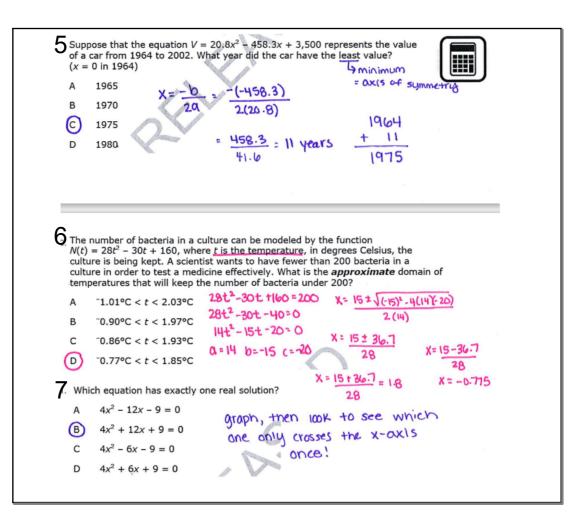
A= W2+8W+12

3 Which expression is equivalent to t^2 – 36?

A
$$(t-6)(t-6)$$

(B)
$$(t+6)(t-6)$$


C
$$(t-12)(t-3)$$


D
$$(t-12)(t+3)$$

+2

 $t^{2} + 0t - 36$ (++6)(+-6)

The sum of two numbers is 24. The sum of the squares of the two numbers is 306. What is the product of the two numbers?

X+4=24

$$\chi^2 + (24 - \chi)^2 = 306$$

B 128
$$(X^2 + U^2 = 30)$$

The heights of two different projectiles after they are launched are modeled by f(x) and g(x). The function f(x) is defined as $f(x) = -16x^2 + 42x + 12$. The table contains the values for the quadratic function g.

g(x)

9 33

-16x2+40x+9
table 10to

40x +9	x	1
nto	0	d
	1	À
	600	387

What is the approximate difference in the maximum heights achieved by the two projectiles?

25

0.2 feet

THT

- 39.6
- 3.0 feet
- 5.4 feet
- (D) 5.6 feet

10. Which expression is equivalent to -3x(x-4) - 2x(x+3)? $-3x^{2}+12-2x^{2}-6$

- $(1) -x^2 1$
- (3) $-5x^2 6x$
- -5x2+6

- $(2) -x^2 + 18x$
- $(4) -5x^2 + 6x$

The length of a rectangle is 3 inches more than its width. The area of (W+3/W) = 40 the rectangle is 40 square inches. What is the length, in inches, of the W2 + 3W = 40 rectangle?

(1) 5

Length: W+3

Area: LW

W2+3W-40=0

2 8

- (3) 8.5 Width: W (4) 11.5
- (w+8\w-5)=0

12 Which expression represents $36x^2 - 100y^6$ factored completely?

W-5 = 0 W+8=0 W= 5

- (1) $2(9x + 25y^3)(9x 25y^3)$
 - (2) $4(3x + 5y^3)(3x 5y^3)$
- 4 19x2-25y)
- can't be negative

- (3) $(6x + 10y^3)(6x 10y^3)$ $(4) \ (18x + 50y^3)(18x - 50y^3)$
- 4(3x-5y3)(3x+5y3)

(x-2)(x-3)=0 What are the roots of the equation $x^2 - 5x + 6 = 0$?

- (1) 1 and −6
- (3) -1 and 6
- X-2=0 X-3=0

- 2 and 3
- (4) -2 and -3
- X= 2 X = 3

4 Which expression is equivalent to $64 - x^2$?

- (1) (8-x)(8-x)
- (3) (x 8)(x 8)(4) (x 8)(x + 8)
- Difference of squares $X^2-y^2=(x-y)(x+y)$

- (2) (8-x)(8+x)

15 The equation of the axis of symmetry of the graph of $y = 2x^2 - 3x + 7$ is

- (3) $x = \frac{3}{2}$ $x = \frac{-b}{20} = \frac{-(-3)}{2(2)} = \frac{3}{4}$
- (2) $y = \frac{3}{4}$
- (4) $y = \frac{3}{2}$

16 The roots of the equation $3x^2 - 27x = 0$ are

3x(x-9)=0

① 0 and 9

(2) 0 and -9

- (3) 0 and 3
- 3x=0 x-9=0